挡土墙电子表格开发报告

1 开发背景

在国家"十二五"期间,在科技支撑项目"重大水利工程建设信息化标准化专项技术开发研究"的资助下,研发了挡土墙电子表格。挡土墙电子表格是在 Excel 界面上,利用其强大的计算功能并结合 VBA 进行二次开发,研制的计算挡土墙后主动土压力的电子表格。该程序主要功能是完成指定滑面的库仑主动土压力计算,并自动搜索出土压力极大值及对应的临界滑裂面位置,可计算墙后填土为任意形式(包括分层土、粘性土、有地下水等)的挡土墙的库仑主动土压力。其基本原理是:将作用于支挡结构上土压力问题看作是一个具有垂直表面并且在此表面作用有外荷载的边坡稳定问题,结合库仑土压力理论,在通用条分法基础上,对墙后滑动土体划分土条,并计算各土条间的土压力,最终得到挡土墙后库仑主动土压力;计算三个滑裂面的土压力值,做出抛物线,找到极大值 *P*_a及对应的滑面位置。该计算方法适用范围广,可以为水利及道路桥梁工程设计人员提供设计依据。

挡土墙电子表格是在边坡稳定分析电子表格 Lossap 基础上开发的,借用 Excel 界面, 主要的计算都是在 Excel 中输入公式进行的,方便用户进行核算;对于较为复杂的判断和计 算,利用 Excel 的 VBA 进行程序的二次开发完成。另外,针对该程序,创建了"程序菜单" 及相关操作按钮,界面友好,方便用户使用。

2 基础理论和规范、文献依据

2.1 分层土库仑主动土压力计算基本原理

在利用库仑土压力理论确定挡土墙后主动土压力时,通常假定墙后填土破坏时将沿着土体内某一直线滑裂面滑动,通过分析由墙土结合面、滑裂面和土体顶部直线构成的三角形土体的力的平衡,计算出土体作用在墙上的主动土压力 *P*。通过不断变动直线滑裂面位置,可以找到使 *P* 获得极大值 *P*_a的临界滑裂面,如图 1 所示。

图 1 应用库仑理论计算主动土压力的方法

(a)作用于一滑动土体上的力;(b)静力平衡条件;(c)确定临界滑裂面

这种在静力平衡条件下建立力的三角形的计算方法(如图 1(b)),只适用于墙后填土为 无粘聚力的单层土的情况。此时,滑裂面下固定土体对滑动土体的支承反力 *R* 与滑裂面的 夹角即为土体的内摩擦角 Ø (如图 1(a));而对于分层土,该支承反力 *R* 应为各土层的支承 反力 *R*_i的合力,此时 *R* 值及与滑裂面夹角难以确定,因此,无法利用库仑土压力理论解决 分层土主动土压力的计算问题。另外,该方法只在墙后填土为无粘性土时提供了数值解,对 于粘性土,只能通过图解法进行计算,计算过程复杂,因此实际工程少用。

Chen & Li (1998)^[1]曾提出一个建立在通用条分法基础上计算主动土压力的数值分析方法。通过力平衡方程求得土压力值,以力矩平衡方程确定主动土压力作用点位置,再通过改变滑裂面位置来确定极大值 *P_a*及对应的临界滑裂面位置。该方法可以解决任意形式滑裂面的分层土(可以包含粘性土)的主动土压力计算问题。

由此,如果将通用条分法引入到库仑土压力理论中,将墙后土体划分土条,引入条间力 倾角*β*的假定,分条计算土压力值,就可以解决分层土的库仑主动土压力的计算问题。

2.1.1 公式推导

设想某一边坡的滑动土体沿滑裂面 y = y(x)下滑,如图 2 所示。对滑动土体进行垂直条分,取出其中一个土条,分析作用在其上的力,主要有以下几种:

1) 土条重量ΔW, 浸润线上为天然容重, 浸润线下为饱和容重。

2) 坡表面垂直荷重 qΔx。

3) 地震力,水平地震力 $\Delta Q = \eta \Delta W$,其作用点与土条底距离为 h_e 。

4) 作用在土条垂直边上的总作用力 *G* (即土骨架间的法向有效作用力和水压力之和), 它与水平线的夹角为*β*,其作用点的纵坐标值为 *y*_t。

对土条建立 x 和 y 方向的静力平衡方程,得到静力平衡的微分方程:

$$\cos(\phi'_e - \alpha + \beta) \frac{\mathrm{d}G}{\mathrm{d}x} - \sin(\phi'_e - \alpha + \beta) \frac{\mathrm{d}\beta}{\mathrm{d}x} G = -p(x) \tag{2.1}$$

其中

$$p(x) = \left(\frac{\mathrm{d}W}{\mathrm{d}x} + q\right)\sin(\phi'_e - \alpha) - r_u \frac{\mathrm{d}W}{\mathrm{d}x}\sec\alpha\sin\phi'_e + c'_e\sec\alpha\cos\phi'_e - \eta\frac{\mathrm{d}W}{\mathrm{d}x}\cos(\phi'_e - \alpha)$$

它的积分形式是

$$G(x) = -\sec(\phi'_{\rm e} - \alpha + \beta)s^{-1}(x) \left[\int_a^x p(\zeta)s(\zeta)dx - G(a)\right]$$
(2.2)

其中

$$s(x) = \sec(\phi'_e - \alpha + \beta) \exp\left[-\int_a^x \tan(\phi'_e - \alpha + \beta) \frac{\mathrm{d}\beta}{\mathrm{d}\zeta} \mathrm{d}\zeta\right]$$

在求解挡土墙后的土压力问题时。如图 2 所示,上述方程组的边界条件是

其中 *P*_w和 *P* 分别为作用于右端拉力缝的水压力和左端直立墙上的主动土压力,对应的 作用点相对位置分别为 *k*(*a*)和 *k*(*b*)。*h*_w和 *h* 分别为拉力缝上水压力和主动土压力的作用高度, *δ*为土压力与 *x* 轴的夹角。在这里,*k*(*b*)是一个输入值,其数值在 1/3~2/3 之间,输入不同的 数值,反映了不同的支挡结构特性。例如,对重力式挡墙,输入 *k*(*b*)=1/3,而对柔性支挡结 构,则输入 1/2。

将上述边界条件带入式*G*(*a*) = *P_w* (2.3)中,得到 Chen & Li (1998)^[1]主动土 压力计算公式:

$$\int_{a}^{b} p(x)s(x)dx = G_{m}$$
(2.9)

$$\label{eq:expansion} \begin{split} \mbox{\ensuremath{\underline{\#}}} & \mbox{\ensuremath{\underline{\#}}} = P_w - PE(b) \;, \quad E(x) = \exp[-\int_a^x \tan\psi \frac{\mathrm{d}\beta}{\mathrm{d}\zeta} \mathrm{d}\zeta] \;, \quad \psi = \phi' - \alpha + \beta \;. \end{split}$$

在确定了滑裂面 y = y(x),根据挡土墙形式选择合适的土压力作用点高度 k(b),再对 $\beta(x)$ 做出合理的假定,即可利用上述公式进行主动土压力计算。关于 $\beta(x)$,如图 3 所示, Morgenstern & Chen (1983)^[2]建议引入以下假定:

$$\tan \beta = f_{\alpha}(x) + \lambda f(x) \tag{2.10}$$

对于 $f_0(x)$ 和 f(x), 笔者提出以下两种假定:

1) $f_0(x) = 0$, f(x) = 0, 即 $\beta \in (a,b)$ 区间内为 0;

2) $f_0(x)$ 在x = a和x = b处为指定值,在(a,b)区间内为直线,f(x) = 0。如图 3(b)所示。

当采用第一种假定时,即假定墙背光滑,此时求得的土压力值实际上就是朗肯主动土压力; 而在计算库仑主动土压力时,在x = b处,即挡土墙与墙后填土接触面上,条间力倾角 $\beta = \delta$,故此处第一种假定不适用,可以采用第二种假定。

现引入库仑土压力理论的相关假定,带入式 $\int_{a}^{b} p(x)s(x)dx = G_{m}$ (2.9)中,从而实现对库仑主动土压力计算的简化。

在库仑土压力理论中,假定挡土墙后土体的滑裂面为直线,此时 y = y(x)为线性函数,则 $d\alpha/dx = 0$ 。对于条间力倾角 β ,令 $\beta \in a \approx a \approx b$ 点分别为 $\beta_a \approx \delta$,中间条块的 β 值按线性内插原则确定。在具有拉裂缝时 $\beta_a = 0$,无拉裂缝时, $\beta_a = \gamma_a$, γ_a 为 a 点坡面的倾角^[2]。结合上述假定,下面对库仑主动土压力简化公式进行推导。

由式
$$\int_{a}^{b} p(x)s(x)dx = G_{m}$$
 (2.9)可知:
 $\int_{a}^{b} p(x)s(x)dx = G_{m} = P_{w} - PE(b)$ (2.11)

其中:

$$E(x) = \exp\left[-\int_{a}^{x} \tan(\phi' - \alpha + \beta) \frac{d\beta}{d\zeta} d\zeta\right]$$

=
$$\exp\left[-\int_{a}^{x} \frac{\sin(\phi' - \alpha + \beta)}{\cos(\phi' - \alpha + \beta)} \frac{d\beta}{d\zeta} d\zeta\right]$$
(2.12)

a 为常数, b 为 x 函数, ϕ' 对于每层土为固定值,故可以根据滑裂面穿过的土层,对式 $E(x) = \exp[-\int_{a}^{x} \tan(\phi' - \alpha + \beta) \frac{d\beta}{d\zeta} d\zeta]$ $= \exp[-\int_{a}^{x} \frac{\sin(\phi' - \alpha + \beta)}{\cos(\phi' - \alpha + \beta)} \frac{d\beta}{d\zeta} d\zeta]$ (2.12)右边进行分段积分得:

$$E(x) = \frac{\cos(\phi' - \alpha + \beta)}{\cos(\phi' - \alpha + \beta_a)} K_j$$
(2.13)

$$s(x) = \sec(\phi' - \alpha + \beta) E(x) = \sec(\phi'_a - \alpha + \beta_a) K_j$$
(2.14)

其中 $K_j = \prod_{i=1}^{j} \frac{\cos(\phi'_i - \alpha + \beta)}{\cos(\phi'_r - \alpha + \beta)}$

在 x=a 处, E(a)=1, $K_j=1$ 。从 a 到 x 共有 j 个摩擦角 ϕ' 不连续的点。从 x=a 向第 1 个不连续点积分时, K_i 保持不变。越过第 1 个不连续点后, K_i 变为

$$K_1 = \frac{\cos(\phi_l' - \alpha + \beta)}{\cos(\phi_r' - \alpha + \beta)}$$
(2.15)

上式中下标 *l*, *r* 分别代表在该不连续点左、右侧相应变量的数值。越过第 *j* 个不连续点 后, *K*_i则按式计算。

设滑面上摩擦角 ϕ' 不连续的点总数为n,代入式 $\int_{a}^{b} p(x)s(x)dx = G_{m} = P_{w} - PE(b)$ (2.11)可得

$$\sec(\phi_a' - \alpha + \beta_a) \int_a^b p(x) K_i dx = P_w - P K_n \frac{\cos(\phi_b' - \alpha + \delta)}{\cos(\phi_a' - \alpha + \beta_a)}$$
(2.16)

故有

$$P = P_w \frac{\cos(\phi_a' - \alpha + \beta_a)}{K_n \cos(\phi_b' - \alpha + \delta)} - \frac{\sec(\phi_b' - \alpha + \delta)}{K_n} \int_a^b p(x) K_j dx]$$
(2.17)

式
$$P = P_w \frac{\cos(\phi_a' - \alpha + \beta_a)}{K_n \cos(\phi_b' - \alpha + \delta)} - \frac{\sec(\phi_b' - \alpha + \delta)}{K_n} \int_a^b p(x) K_j dx$$
 (2.17)即为建立

在条分法基础上的库仑主动土压力公式。在无拉力缝时上式右端第一项为零,在有拉力缝时 右端第一项中的 β_a=0。以上的推导考虑了滑裂面经过不同土层时φ'的变化,并采用分段积 分的方法,因此,它可以解决分层土的库仑主动土压力的计算问题。

2.1.2 程序实现

在边坡稳定分析电子表格 Lossap 构架基础上,使用 VBA 程序进行再开发,形成了一个 独立的挡土墙库仑主动土压力计算程序,如图 4 所示。

图 4 挡土墙电子表格

挡土墙电子表格包括 6 个工作表: Finfo, slip surface1, slip surface2, slip surface3, critical slip surface 及使用手册表。其中除使用手册外,其他 5 个表的格式基本相同,主要分为数据 输入区、导入数据区、计算结果区和图形显示 4 个区域。为了增加程序的易用性,还特地 开发了"程序菜单",从而实现数据导入、导出和计算等各项工作。

进入 Finfo 工作表后,需要事先在左上角的数据输入区输入材料总数,各层土的重度

和强度指标、坡外水位、水的重度、软弱夹层数、外荷载及地震烈度等数据。除此之外,本 程序还需要让用户自己确定所要划分的条块数;另外,计算过程中需要对条间力倾角β按照 报告 2.1.1 节介绍的原则进行假定,如图 5 所示。

计算参数设定					
分条数	4				
₿ a	0				
\$ b	0				

图 5 计算参数设定

填完基本信息后,单击"程序菜单"中的"打开文件"按钮,导入由 Stab_Emu_Lossap.LSP 生成的数据文件,电子表格将自动地算出每个条块的基本信息,包括:

(1)条块底滑面中点的数据:中点的 x, y 坐标,中点的 c, ø, 孔压 u 和土条重量。

(2) 外力:作用于每个土条上的水平和垂直外力,以及水平力的作用点位置。

(3) 其它相关的几何参数,如条块宽度、高度、底滑面倾角等。

在数据的计算过程中,主要是利用 Excel 的公式进行直接计算,例如条块底的中心坐标、 倾角等(列 P~列 S),这可以方便使用者进行校核;而对于一些需要较为复杂的判断和计 算的参数,则由开发的 VBA 函数 HWM 和 PXY 及其他计算程序来完成。HWM 函数主要 通过寻找滑块中心线与边坡材料分界线、浸润线、坡外水位等的交点,并对其按高度采用冒 泡法排序,从而获得条块高度、条块底部的抗剪强度、条块平均重度等信息。PXY 函数是 计算作用在每个条块上的力及作用位置。这些与 Lossap 电子表格基本一致。而在划分条块 时,除了根据用户所填条块数进行自动划分外,对于滑裂面与土层交点处也自动进行了划分, 从而保证找到每个内摩擦角φ'的突变点。另外,根据条块划分情况对β进行了线性插值。

导入数据后,Finfo,slip surface1,slip surface2,slip surface3,critical slip surface 五张 表中都将显示导入时的初始滑面的基本计算信息。点击"计算"按钮,程序便开始进行滑面 搜索(本程序中设定的搜索滑面为3个),并对搜索的滑面进行库仑主动土压力的计算,计 算信息分别显示在 slip surface1,slip surface2,slip surface3 三个表格中,如图 6 所示。

6

挡土墙电子表格开发报告

	AB34	•	()	fx =-SU	IM (AJ40:4	J150)/AI	34														
	0	P	Q	R	S	Т	U	V	W	X	Y	Z	AA	AB	AC	ÅE	AF	AG	AH	AI	J
31		_																			
		(or	10	20 30	40 5	0 60	70 80)					结果	输出							
32		0 4	· + +	+ +	.																_
		y 8 -			t.								滑面位置	土压力值	1					¥-(5	
33		12			<u>۱</u>								xx (n)	Pa(kPa)	ļ					KIL	
24		20 1			x)					32.4	1473.1						1.1	
24															8						1
35																					
36																					
37		10 201 7 17 14	1	Ar Jahowar					of the data	- st mit-tr	1					\$ 23 + AZ (2				1	
38	条块编号	君家國余 史 中心坐标	条块y	余状党	条块倾角	条块高度	平均容重	重力	北陽水压	日本	粘聚力	摩擦角	条块上	的集中力与	9位置	米国力限用	<i>∎</i> -α (孤度)	中间量1	中间轝2	中间量3	中间量4
39	ž	x0	y0	Ь	α	hm	Y	Wi	nu	u	с	•	PY	PX	he	0.00	<i>∳</i> -α	p(x)	Kj	Kj'	p(x) *Kj'
40	1	20 40	0.05	0.44	4.05	0.05	4.0.000			0.00	2.00	00.00	00.00	0.00	0.00	0.01	-0.8d	=1.02	1.014	1 014	4.070
		32.40	0.20	0.11	1.35	0.25	10.800	0.48	0.000	10.00	3.00	29.00	20.00	0.00	0.00	0.01	0.04	1.00	1.014	1.014	-1.072
41	2	32.92	2.29	0.81	1.35	2.29	16.800	0.48	0.000	17.49	3.00	29.00	20.00	0.00	0.00	0.01	-0.84	-85.14	1.014	1.029	-87.614
41 42	2	32.92 33.49	2.29 4.79	0.81	1.35	2.29 4.79	16.800 16.800	0.48 31.15 26.13	0.000	17.49 41.99	3.00 3.00 3.00	29.00 29.00 29.00	20.00	0.00	0.00	0.02 0.04	-0.84	-85.14 -75.50	1.015	1.029	-87.614 -78.853
41 42 43	2 3 4	32.92 33.49 33.95	0.23 2.29 4.79 6.82	0.11 0.81 0.32 0.60	1.35 1.35 1.35 1.35	0.25 2.29 4.79 6.82	16.800 16.800 17.013	0.48 31.15 26.13 69.62	0.000 0.456 0.522 0.534	17.49 41.99 61.94	3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00	20.00 20.00 20.00 20.00	0.00	0.00	0.02 0.04 0.05	-0.84 -0.84 -0.84	-85.14 -75.50 -202.57	1.014 1.015 1.015 1.015	1.014 1.029 1.044 1.060	-1.072 -87.614 -78.853 -214.808
41 42 43 44	2 3 4 5	32.92 33.49 33.95 34.44	0.25 2.29 4.79 6.82 8.95	0.11 0.81 0.32 0.60 0.37	1.35 1.35 1.35 1.35 1.35	0.25 2.29 4.79 6.82 8.95	16.800 16.800 17.013 17.224	0.48 31.15 26.13 69.62 56.76	0.000 0.456 0.522 0.534 0.537	17.49 41.99 61.94 82.81	3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 29.00	20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00	0.00	0.01 0.02 0.04 0.05 0.06	-0.84 -0.84 -0.84 -0.84	-85.14 -75.50 -202.57 -165.22	1.014 1.015 1.015 1.015 1.016	1.014 1.029 1.044 1.060 1.077	-1.072 -87.614 -78.853 -214.808 -177.965
41 42 43 44 45 40	2 3 4 5 6	32.92 33.49 33.95 34.44 34.90	0.25 2.29 4.79 6.82 8.95 10.99	0.11 0.81 0.32 0.60 0.37 0.56	1.35 1.35 1.35 1.35 1.35 1.35	0.25 2.29 4.79 6.82 8.95 10.99	16.800 16.800 17.013 17.224 17.360	0.48 31.15 26.13 69.62 56.76 106.19	0.000 0.456 0.522 0.534 0.537 0.539	0.00 17.49 41.99 61.94 82.81 102.75	3.00 3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 30.00 30.00	20.00 20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00	0.01 0.02 0.04 0.05 0.06 0.07	-0.84 -0.84 -0.84 -0.84 -0.82	-85.14 -75.50 -202.57 -165.22 -307.04	1.014 1.015 1.015 1.015 1.016 1.016	1.014 1.029 1.044 1.060 1.077 1.094	-1.072 -87.614 -78.853 -214.808 -177.965 -335.875
41 42 43 44 45 46 47	2 3 4 5 6 7	32, 92 33, 49 33, 95 34, 44 34, 90 35, 64	2.29 4.79 6.82 8.95 10.99 14.25	0.11 0.81 0.32 0.60 0.37 0.56 0.92	1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	0.25 2.29 4.79 6.82 8.95 10.99 14.25	16.800 16.800 17.013 17.224 17.360 17.507	0.48 31.15 26.13 69.62 56.76 106.19 230.68	0.000 0.456 0.522 0.534 0.537 0.539 0.540	17.49 41.99 61.94 82.81 102.75 134.70	3.00 3.00 3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 30.00 30.00	20.00 20.00 20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.01 0.02 0.04 0.05 0.06 0.07 0.09	-0.84 -0.84 -0.84 -0.84 -0.82 -0.82	-85.14 -75.50 -202.57 -165.22 -307.04 -666.79	1.014 1.015 1.015 1.015 1.016 1.016 1.016	1.014 1.029 1.044 1.060 1.077 1.094 1.111	-1.072 -87.614 -78.853 -214.808 -177.965 -335.875 -741.074
41 42 43 44 45 46 47 48	2 3 4 5 6 7	32.40 32.92 33.49 33.95 34.44 34.90 35.64	2.29 4.79 6.82 8.95 10.99 14.25	0.11 0.81 0.32 0.60 0.37 0.56 0.92	1, 35 1, 35 1, 35 1, 35 1, 35 1, 35 1, 35	0.25 2.29 4.79 6.82 8.95 10.99 14.25	16.800 16.800 17.013 17.224 17.360 17.507	0.48 31.15 26.13 69.62 56.76 106.19 230.68	0.000 0.456 0.522 0.534 0.537 0.539 0.540	17.49 41.99 61.94 82.81 102.75 134.70	3.00 3.00 3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 29.00 30.00 30.00	20.00 20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.01 0.02 0.04 0.05 0.06 0.07 0.09	-0.84 -0.84 -0.84 -0.84 -0.82 -0.82	-85.14 -75.50 -202.57 -165.22 -307.04 -666.79	1.014 1.015 1.015 1.015 1.016 1.016 1.016	1.014 1.029 1.044 1.060 1.077 1.094 1.111	-1.072 -87.614 -78.853 -214.808 -177.965 -335.875 -741.074
41 42 43 44 45 46 47 48 49	2 3 4 5 6 7	32.48 32.92 33.49 33.95 34.44 34.90 35.64	0.29 2.29 4.79 6.82 8.95 10.99 14.25	0.11 0.81 0.32 0.60 0.37 0.56 0.92	1, 35 1, 35 1, 35 1, 35 1, 35 1, 35 1, 35	0.25 2.29 4.79 6.82 8.95 10.99 14.25	16.800 16.800 17.013 17.224 17.360 17.507	0.48 31.15 26.13 69.62 56.76 106.19 230.68	0.000 0.456 0.522 0.534 0.537 0.539 0.540	17.49 41.99 61.94 82.81 102.75 134.70	3.00 3.00 3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 29.00 30.00 30.00	20.00 20.00 20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.01 0.02 0.04 0.05 0.06 0.07 0.09	-0.84 -0.84 -0.84 -0.84 -0.82 -0.82	-1.06 -85.14 -75.50 -202.57 -165.22 -307.04 -666.79	1.014 1.015 1.015 1.016 1.016 1.016 1.016	1.014 1.029 1.044 1.060 1.077 1.094 1.111	-1.072 -87.614 -78.853 -214.808 -177.965 -335.875 -741.074
41 42 43 44 45 46 47 48 49 50	2 3 4 5 6 7	32.92 33.49 33.95 34.44 34.90 35.64	0.25 2.29 4.79 6.82 8.95 10.99 14.25	0.11 0.81 0.32 0.60 0.37 0.56 0.92	1.35 1.35 1.35 1.35 1.35 1.35 1.35	0.25 2.29 4.79 6.82 8.95 10.99 14.25	16.800 16.800 17.013 17.224 17.360 17.507	0.48 31.15 26.13 69.62 56.76 106.19 230.68	0.000 0.456 0.522 0.534 0.537 0.539 0.540	17.49 41.99 61.94 82.81 102.75 134.70	3.00 3.00 3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 29.00 30.00 30.00	20.00 20.00 20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.01 0.02 0.04 0.05 0.06 0.07 0.09	-0.84 -0.84 -0.84 -0.84 -0.84 -0.82 -0.82	-85.14 -75.50 -202.57 -165.22 -307.04 -666.79	1.015 1.015 1.015 1.016 1.016 1.016	1.014 1.029 1.044 1.060 1.077 1.094 1.111	-1.072 -87.614 -78.853 -214.808 -177.965 -335.875 -741.074
41 42 43 44 45 46 47 48 49 50 51	2 3 4 5 6 7	32.40 32.92 33.95 34.44 34.90 35.64	0.25 2.29 4.79 6.82 8.95 10.99 14.25	0.11 0.81 0.32 0.60 0.37 0.56 0.92	1.35 1.35 1.35 1.35 1.35 1.35 1.35	0.25 2.29 4.79 6.82 8.95 10.99 14.25	16.800 16.800 17.013 17.224 17.360 17.507	0.48 31.15 26.13 69.62 56.76 106.19 230.68	0.000 0.456 0.522 0.534 0.537 0.539 0.540	17.49 41.99 61.94 82.81 102.75 134.70	3.00 3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 29.00 30.00 30.00	20.00 20.00 20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.01 0.02 0.04 0.05 0.06 0.07 0.09	-0.84 -0.84 -0.84 -0.84 -0.82 -0.82	-1.06 -85.14 -75.50 -202.57 -165.22 -307.04 -666.79	1.015 1.015 1.015 1.015 1.016 1.016 1.016	1.014 1.029 1.044 1.060 1.077 1.094 1.111	-1.072 -87.614 -78.853 -214.808 -177.965 -335.875 -741.074
41 42 43 44 45 46 47 48 49 50 51 51 52	2 3 4 5 6 7	32.40 32.92 33.49 33.95 34.44 34.90 35.64	0.25 2.29 4.79 6.82 8.95 10.99 14.25	0.11 0.81 0.32 0.60 0.37 0.56 0.92	1, 35 1, 35 1, 35 1, 35 1, 35 1, 35 1, 35 1, 35	0.25 2.29 4.79 6.82 8.95 10.99 14.25	16.800 16.800 17.013 17.224 17.360 17.507	0.48 31.15 26.13 69.62 56.76 106.19 230.68	0.000 0.456 0.522 0.534 0.537 0.539 0.540	17.49 41.99 61.94 82.81 102.75 134.70	3.00 3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 29.00 30.00 30.00	20.00 20.00 20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.02 0.04 0.05 0.06 0.07 0.09	-0.84 -0.84 -0.84 -0.84 -0.82 -0.82	-1.06 -85.14 -75.50 -202.57 -165.22 -307.04 -666.79	1.015 1.015 1.015 1.016 1.016 1.016	1.014 1.029 1.044 1.060 1.077 1.094 1.111	-1.072 -87.614 -78.853 -214.808 -177.965 -335.875 -741.074
41 42 43 44 45 46 47 48 49 50 51 51 52 53	2 3 4 5 6 7	32.40 32.92 33.49 33.95 34.44 34.90 35.64	0.29 2.29 4.79 6.82 8.95 10.99 14.25	0.11 0.81 0.32 0.60 0.37 0.56 0.92	1, 35 1, 35 1, 35 1, 35 1, 35 1, 35 1, 35 1, 35	0.25 2.29 4.79 6.82 8.95 10.99 14.25	16.800 16.800 17.013 17.224 17.360 17.507	0.48 31.15 26.13 69.62 56.76 106.19 230.68	0.000 0.456 0.522 0.534 0.537 0.539 0.540	17.49 41.99 61.94 82.81 102.75 134.70	3.00 3.00 3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 29.00 30.00 30.00	20.00 20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.02 0.04 0.05 0.06 0.07 0.09	-0.84 -0.84 -0.84 -0.84 -0.82 -0.82	-85.14 -75.50 -202.57 -165.22 -307.04 -666.79	1.015 1.015 1.015 1.016 1.016 1.016	1.029 1.029 1.044 1.060 1.077 1.094 1.111	-1.072 -87.614 -78.853 -214.808 -177.985 -335.875 -741.074
41 42 43 44 45 46 47 48 49 50 51 52 53 53 54	2 3 4 5 6 7	32.40 32.49 33.49 33.95 34.44 34.90 35.64	0.29 4.79 6.82 8.95 10.99 14.25	0.11 0.32 0.60 0.37 0.56 0.92	1. 35 1. 35 1. 35 1. 35 1. 35 1. 35 1. 35	0.25 2.29 4.79 6.82 8.95 10.99 14.25	16.800 16.800 17.013 17.224 17.360 17.507	0.48 31.15 26.13 69.62 56.76 106.19 230.68	0.000 0.452 0.522 0.534 0.537 0.539 0.540	0.00 17.49 61.94 82.81 102.75 134.70	3.00 3.00 3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 30.00 30.00	20.00 20.00 20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.02 0.04 0.05 0.06 0.07 0.09	-0.84 -0.84 -0.84 -0.84 -0.84 -0.82 -0.82	-1.06 -85.14 -75.50 -202.57 -165.22 -307.04 -666.79	1.015 1.015 1.015 1.016 1.016 1.016	1.029 1.044 1.060 1.077 1.084 1.111	-1.072 -87.614 -78.853 -214.808 -177.965 -335.875 -741.074
41 42 43 44 45 46 47 48 49 50 51 52 53 52 53 55 55	2 3 4 5 6 7	32.40 32.92 33.49 33.95 34.44 34.90 35.64	2.29 4.79 6.82 8.95 10.99 14.25	0.11 0.32 0.60 0.37 0.56 0.92	1, 35 1, 35 1, 35 1, 35 1, 35 1, 35 1, 35 1, 35	0.25 2.29 4.79 6.82 8.95 10.99 14.25	16.800 16.800 17.013 17.224 17.360 17.507	0.48 31.15 26.13 69.62 56.76 106.19 230.68	0.000 0.456 0.522 0.534 0.537 0.539 0.539	17.49 41.99 61.94 82.81 102.75 134.70	3.00 3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 30.00 30.00	20.00 20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.02 0.04 0.05 0.06 0.07 0.09	-0.84 -0.84 -0.84 -0.84 -0.82 -0.82	-85.14 -75.50 -202.57 -165.22 -307.04 -666.79	1.015 1.015 1.015 1.016 1.016 1.016	1.029 1.044 1.060 1.077 1.094 1.111	-1.072 -87.614 -78.853 -214.808 -177.965 -335.875 -741.074
41 42 43 44 45 46 47 48 49 50 51 52 53 53 55 55 56 57	2 3 4 5 6 7	32.40 33.49 33.95 34.44 34.90 35.64	2.29 4.79 6.82 8.95 10.99 14.25	0.81 0.32 0.60 0.37 0.56 0.92	1.35 1.35 1.35 1.35 1.35 1.35 1.35	0.29 2.29 4.79 6.82 8.95 10.99 14.25	15.800 16.800 17.013 17.224 17.360 17.607	0.48 31.15 26.13 69.62 56.76 106.19 230.68	0.000 0.450 0.522 0.534 0.537 0.539 0.540	17.49 41.99 61.94 82.81 102.75 134.70	3.00 3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 29.00 30.00 30.00	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.02 0.04 0.05 0.06 0.07 0.09	-0.84 -0.84 -0.84 -0.84 -0.82 -0.82	-3.5.14 -75.50 -202.57 -165.22 -307.04 -666.79	1.015 1.015 1.015 1.016 1.016 1.016 1.016	1.029 1.044 1.060 1.077 1.084 1.111	-1.072 -87.614 -78.853 -214.808 -177.965 -335.875 -741.074
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 57 4	2 3 4 5 6 7 7	32.92 33.49 33.95 34.44 34.90 35.64	2.29 4.79 6.82 8.95 10.99 14.25	0.81 0.32 0.60 0.37 0.56 0.92	1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	0.29 2.29 4.79 6.82 8.95 10.99 14.25	18.800 16.800 17.013 17.224 17.360 17.507 	0.48 31.15 26.13 69.62 56.76 106.19 230.68	0.000 0.456 0.522 0.534 0.537 0.539 0.540	0.00 17.49 61.94 82.81 102.75 134.70	3.00 3.00 3.00 3.00 3.00 3.00	29.00 29.00 29.00 29.00 30.00 30.00	20.00 20.00 20.00 20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.02 0.04 0.05 0.06 0.07 0.09	-0.84 -0.84 -0.84 -0.84 -0.82 -0.82	-1.05 -85.14 -75.50 -202.52 -165.22 -307.04 -866.79	1.015 1.015 1.015 1.016 1.016 1.016 1.016	1.029 1.044 1.060 1.077 1.084 1.111	-1.072 -87.614 -78.853 -214.808 -177.965 -335.875 -741.074

图 6 各滑面土压力计算信息

在 Finfo 表中的"计算结果显示区"中(图 7),以搜索的滑面算得的土压力值及对应的滑面位置 xx,用抛物线进行拟合,并通过 Excel 的规划求解功能求出临界滑面对应的位置 x,以及对应的最大土压力值 P_a 。临界滑面的土压力计算过程信息显示在 critical slip surface 表中。

2.2 文献、规范依据

2.2.1 文献

库仑主动土压力计算基本原理可参考文献[1],[2],[6],[7]。

2.2.2 规范

本程序编写过程参考了《SL379-2007水工挡土墙设计规范》。

3 程序测试报告

3.1 测试目的

挡土墙电子表格于近日开发完成,为使该程序更好地为科研、生产和实际工程服务,对 该版本程序计算结果的准确性、使用功能的合理性、程序的实用性、程序的稳定性等方面进 行测试是十分必要的,也是程序开发过程的一个重要环节。

3.2 测试内容

本次测试工作的主要内容包括:

- (1) 与朗肯理论计算结果进行对比;
- (2) 与库仑土压力理论闭合解进行对比;
- (3) 对程序的稳定性进行测试;

(4) 根据测试结果对挡土墙电子表格程序的性能作出总体评价。

本次测试选用的例题均为教科书推荐的典型例题和以往科研工作中遇到的实际例题,具 有代表性和说服力,可作为程序测试用例题。

3.3 测试结果

为验证挡土墙程序计算的正确性,分别对程序进行经典例子的验算及与库仑土压力理论 解一致性的验算。

1、测试题一

测试题目: 与朗肯理论对比。

测试目的:验证本程序计算结果在墙土间摩擦角为0时是否可以回归到朗肯理论解。

测试内容:使用本程序计算教科书中四个重力式挡土墙例子,将计算结果与朗肯解进行对比。

以教科书(钱家欢,1990)^[8]中重力式挡土墙的四个经典例子(图 8)进行验算。

图 8 四个重力式挡土墙实例

其中条间力倾角取 $\beta_a = 0$ (与墙后填土倾角相同),当 $\beta_b = \delta = 0$ 时,本程序计算结果可以回归到经典解(此时改变条块数不影响计算结果),计算结果如表 1 所示。

	表1	四个重力式挡土墙	的土压力	
Example	(a)	(b)	(c)	(d)
Rankine	432.40	374.2	197.70	118.9
本程序解	432 14	373 75	193 45	118 21

2、测试题二

测试题目: 与库仑土压力理论闭合解对比。

测试目的:验证本程序计算结果与库仑理论闭合解是否一致。

测试内容:计算当挡土墙与墙后填土间摩擦角 $\delta = 0^\circ$, $\delta = 5^\circ$, $\delta = 10^\circ$ 和 $\delta = 20^\circ$ 时的主动土压力值及临界滑面倾角,并与库仑土压力公式的结果进行对比。

图 9 重力式挡土墙算例

以图 9 中的重力式挡土墙为例,其中H = 12m, c = 0, $\phi = 36^{\circ}$, $\beta = 0$, $\gamma = 2.1 \times 9.8 kN / m^3$ 。分别计算当挡土墙与墙后填土间摩擦角 $\delta = 0^{\circ}$, $\delta = 5^{\circ}$, $\delta = 10^{\circ}$ 和 $\delta = 20^{\circ}$ 时的主动土压力值及临界滑面倾角。

(1) 本程序计算

计算简图如图 10 所示,由挡土墙程序计算各滑面的土压力值,并搜索出最大土压力值 及对应滑面所在位置。经计算得各滑面及土压力值如下表 2 所示:

图 10 重力式挡土墙算例计算简图

对应的滑面倾角(滑面与水平面夹角): $\beta_{\alpha} = 90^{\circ} - \arctan((15 - x)/12)$ 。

(2) 库仑土压力理论公式计算

库仑土压力的理论解计算公式为:

$$K_{a} = \frac{\cos^{2}(\phi' - \alpha)}{\cos^{2}\alpha\cos(\delta + \alpha)\left[1 + \sqrt{\frac{\sin(\phi' + \delta)\sin(\phi' - \beta)}{\cos(\delta + \alpha)\cos(\beta - \alpha)}}\right]^{2}}$$
(3.1)

$$\cot(\beta_a - \beta) = \sec(\phi' + \delta + \alpha - \beta) \sqrt{\frac{\sin(\phi' + \delta)\cos(\delta + \alpha)}{\sin(\phi' - \beta)\cos(\beta - \alpha)}}$$
(3.2)

对于程序中的算例,有
$$\alpha = \beta = 0$$
, $\phi' = 36^{\circ}$ 。 带入式

$$K_{a} = \frac{\cos^{2}(\phi' - \alpha)}{\cos^{2}\alpha\cos(\delta + \alpha)\left[1 + \sqrt{\frac{\sin(\phi' + \delta)\sin(\phi' - \beta)}{\cos(\delta + \alpha)\cos(\beta - \alpha)}}\right]^{2}}$$
(3.1)

 $\cot(\beta_{a} - \beta) = \sec(\phi' + \delta + \alpha - \beta)\sqrt{\frac{\sin(\phi' + \delta)\cos(\delta + \alpha)}{\sin(\phi' - \beta)\cos(\beta - \alpha)}}$

最大土压力值及临界滑裂面倾角,如表 2 所示。

	ŧ	当土墙程序计		闭合解		
工况	临界滑裂面 位置 <i>x</i> (m)	主动土压 力 <i>P_a</i> (kN)	临界滑裂面倾 角 $oldsymbol{eta}_{lpha}$ (9	Ka	主动土压 力 <i>P</i> _a (kN)	临界滑裂 面倾角 $oldsymbol{eta}_{lpha}$
$\delta = 0^{\circ}$	8.88	384.69	62.97	0.260	384.69	63.00
$\delta = 5^{\circ}$	8.41	369.60	61.23	0.250	369.96	62.17
$\delta = 10^{\circ}$	8.56	359.39	61.78	0.243	359.43	61.42
$\delta = 20^{\circ}$	8.08	348.81	60.03	0.235	348.81	60.05

3、测试题三

测试题目:上海世博演艺中心深基坑主动土压力计算。

测试目的:比较本程序计算与陈祖煜(2010)^[3]中有效应力法的计算结果,验证本程序计 算准确性。

测试内容:利用本程序计算该深基坑的主动土压力,并与陈祖煜(2010)^[3]中有效应力法 计算结果对比,验证程序自动搜索结果的可靠性。

工程概况:

上海世博演艺中心位于上海市浦东世博园区世博轴以东,地下主体工程为3层整体地下室,埋深约为16m。场地地层分布等信息参考陈祖煜(2010)^[3]。根据工程地质报告,对实际

计算剖面作了概化。对原始试验数据整编分析后提出如表 3 所示力学参数。

		表3	世博演艺中	心例计算参	数	
十厚	层底标高(m)	重度	有效应力引	虽度指标	固结不排水试验强度指标	
<u>_</u> _/Д	/云/ққ///山(Ш)	(kN/m^3)	c' (kPa)	<i>ф</i> (°)	c_{cu} (kPa)	$\phi_{cu}(^{\circ})$
1	-4.46	18	22	0	19	11
2	-10.16	17.9	22	0	19	11
4	-17.26	16.8	19	11	14.8	14

陈祖煜(2010)^[3]中有效应力法计算结果及本程序计算结果列于表 4 。相应的计算简图 见图 11。

表4	不同计算条件下的主动土压力(kN/m)						
	有效应力法计算结果	本程序计算结果					
主动土压力值 P _a (kN)	1843.0	1855.4					
	q=20kN/n V STAB计算	—————————————————————————————————————					

图 11 上海世博演艺中心基坑支护计算结果

4、测试题四

测试目的:程序基本操作功能测试

测试内容:数据文件调入、存储、管理,计算结果查询、图形输出打印等功能。

测试结果:经测试,程序基本功能,如数据调入、存储、管理等功能均能满足设计要求。 导入数据时可自动绘制计算示意图,计算结果生成的图形能转化生成 AUTOCAD 要求的 DXF 文件格式,并在 AUTOCAD 中生成相应的图形;搜索临界滑面时可绘制抛物线。功能 均能满足设计要求。

3.4 测试结论

本项测试工作以朗肯理论及库仑理论闭合解及一个实际工程实例为测试题目,针对挡土 墙电子表格的基本功能、计算功能、绘图功能等进行测试,测试结果表明该程序的计算结果 准确、功能设置合理、操作简单实用、程序具有较好的稳定性,可以应用于科研、教学和实 际生产等工作中。

4 工程应用报告

5 参考文献

[1] Chen Z, Li S. Evaluation of active earth pressure by the generalized method of slices[J]. Canadian Geotechnical Journal, 1998, 35(4): 591-599.

[2] Chen, Z., and Morgenstern, N.R. 1983. Extensions to the generalized method of slices for stability analysis. Canadian Geotechnical Journal, 20: 104–119.

[3] 陈祖煜, 迟鸣, 孙平, 等. 计算柔性支挡结构主动土压力的简化方法[J]. 岩土工程学报, 2010, 32(1): 22-27.

[4] 陈立宏, 孙平, 陈祖煜. 边坡稳定分析的电子表格法 LOSSAP[J]. 岩土工程学报, 2012, 34(7): 1329-1332.

[5] CHEN L H, CHEN Z Y, SUN P. Slope stability analysis using graphic acquisitions and spreadsheets[C]// Proceedings of 10th International Symposium of Landslide and Engineered Slope. Xi'an, 2008.

[6] 陈祖煜. 土质边坡稳定分析: 原理、方法、程序[M]. 北京: 中国水利水电出版社, 2002. (CHEN Zu-yu. Soil slope stability analysis: theory, methods and programs[M]. Beijing: China Water Power Press, 2002. (in Chinese))]

[7] 陈仲颐,周景星,王洪瑾. 土力学[M]. 北京: 清华大学出版社, 1992. (CHEN Zhong-yi, ZHOU Jing-xing, WANG Hong-jin. Soil mechanics[M]. Beijing: Tsinghua University Press, 1992. (in Chinese))

[8] 钱家欢. 理论土压力. 南京: 河海大学出版社.1990

12