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Abstract The normal use of the finite element method m the analysis of earth and rock-fill dams revolves 
troublesome modtficatmns of the fuute element mesh In the present paper it is pointed out that m problems of 
steady seepage it is not necessary to determine m the lterataon process the entare free surface, but only the elevataon 
of the release point It is shown by several examples that the proposed method can sunphfy the seepage analysis to a 
certain degree, and also gwe satasfactory results 

Introduc~on 

Seepage analysis plays an tmportant role m designs of hydrauhc structures, such as earth and rock-fill dams It can 
stgmficantly affect the safety and cost of the structures Numerical methods are usually adopted to solve the seepage 
problems encountered m actual practice Among these approaches, finite element method (FEM) is widely accepted 
owing to as extenswe adaptataon to eomphcated boundaries, anlsotropy, trthomogeneous material and three- 
dimensional problems Presently, FEM techmques related to various field problems have progressed rapidly Many 
general commercial software usually have modules for heat conduction [1], winch is slrmlar to seepage 
phenomenon However, seepage through pervious earth and rock-fiU dam has a phreatac surface, or free surface The 
release pomt where the free surface intersects the downstream batter is higher than the elevataon of downstream 
water level This problem Is more complicated for FEM used for steady heat conduction However, there has been a 
lot of papers aiming to solve th~s problem 
Zlenklewacz et al firstly used FEM to solve confined seepage problems [2], then Taylor et al used FEM to determine 
the free surface by modafymg the mesh which only represents the saturated soil domain [3] Unttl now, most of the 
methods referenced deternune the free surface by ~teralaon of a series of points that form the surface 
There are two mare categories of fimte element approaches for solutaon of free surface of seepage problems The 
first group of these approaches reqmres mochficatmn of the mesh at each Iteration step, which needs great 
computational effort, owing to the mtnnsxc geometry of the mesh [4] The second group has a mesh of constant 
geometry [5-8], whale a statable pressure-permeabdlty law nught be needed to identify the saturated and unsaturated 
zone, resultmg m adjustment of the materml parameters during solutaon process 
Clvldlm and Gloda presented an approxunate solution of the free surface of transient seepage problems without 
modification of the mesh [9] The free surface is represented by a series of segments that coincide with sldes of the 
elements of the mesh Lacy and Prevost employed a penalty procedure to locate the free surface by controlhng the 
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fluid pressure to a small specified negatwe value m the dry region [10] Their method needed refmement of the 
mesh 
This paper presents a new approach by only iterating the elevation of  the release point, and the free surface can be 
directly determined from the results of  pore pressure field, so that the seepage analysis is simplified to a certain 
degree and the accuracy is also satisfied Based on the new approach, ordinary seepage analysis can also be carried 
out by employing any general commercial software m hand 

Description of  the approach 

Considering the mhomogeneous, amsotropy medium which obeys Darcy's law, with the geometrical coordinate axis 
coincide with the seepage one, the controlling equaUons and boundary conditions of  the three dimensional steady 
seepage problem are described as [11] 

Nt, 'NJ+g t  "-A-J +w:° 
n 

H ( x , y , z )  = H ( x , y , z )  

OH OH ~cos (n , z )  = k x --~-x cos(n,x) + ky --~-cos(n, y) + k, 

H ( x , y , z )  = z ( x , y )  

(1) 

in domain .O 

(2) 
on border Si 

(3) 

on $2 and $3 
(4) 

onS3 andS4 
where, z is the coordinate of  elevation, H Is the total head at any point m a domam denoted as .(2, kx, ky and kz are 
the permeability coefficients in x, y and z directions respectively w is the water absorbed by or separated out from 

soil particles, H is the given total head, Q is the given permeability rate, Si is the boundary with given total head, 
$2 is the boundary with given permeability rate, $3 is the free surface, $4 is the downstream batter below the release 
point n Is the unit vector on upper normal direction at any point of  $2 and $3 
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Fig 1 Steady seepage of  earth and rock-fill dam 

Referring to the steady seepage problem of  earth and rock-fill dam m Fig 1, .Ols the seepage domain located m the 
range of ABEFGA AB, FG and the release section EF form the boundary $1 with given total head AG and free 
surface BE form the impervious boundary $2, and the pore pressure on BE and EF line is zero That is to say, on the 
free surface, conditions (3) and (4) should be satisfied simultaneously, while m (3), q is set to be zero However, the 
position of  the free surface is unknown, it ought to be determined during the solving of  the equations At present, 
tteratwe computing method is employed to determine the free surface Assurmng the mmal position of  the free 
surface, then solving the ordinary boundary problem including Equations (1)-(3), the value of  total head at any point 
In seepage area is thus calculated The analysis checks if condition (4) is satisfied in the free surface under a 
permissible tolerance If it is satisfied, the iteration is completed Otherwise, the position of  the free surface should 
be modified, and the iteration has to be repeated maul the controlling condition is satisfied 
This method is simple and easily adapted m a certain sense However, if the assumed position of  free surface is 
fairly far from the actual one, and if the finite element mesh can't be efficiently adjusted during iteration, there 
might generate singular elements and leads to serious errors, or even interrupt the calculation [11] 
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To avoxd this difficulty, a fully determmed boundary is used to replace the assumed free surface Also referring to 
Fig 1, the seepage area should be taken as ABCDEFGA, AB, FG and the release sectaon EF form the boundary SI 
with given total head, AG and the crest configuration of the dam BCDE form the unpervlous boundary $2 Within 
the downstream batter DG, DE is an impervious boundary, whale EF is a boundary with zero pore pressure The 
elevation of  the release point E is still unknown, which also needs to be determined by tterataon However, by thas 
new approach, the posatmn that needs to be deterrmned as not a series node whach forms the entire free surface, but 
just the release point The free surface Is deterrmned by interpolation of  the pore pressure field, so there revolves no 
mothficatxon of  mesh m the seepage area, whach can make the mltlal dascretlon of  mesh very flexthle Only the mesh 
an the vacxmty of  the release point needs to be refined Thas new approach can largely facdatate the solving of  the 
problem 
The new approach assumes the matml elevation of  the release point at first, then solves the problem including 
Equations (1)-(3) The total head field as thus calculated The antersectaon of  the zero pore pressure contour and the 
downstream batter is compared w~th the assumed release point If the two points comcxde with each other under a 
permissible tolerance, then the calculation as completed Otherwise, the elevataon of  the release pomt as mothfied, 
and the ~terat~on xs repeated until this controlling conthtaon ls satisfied 
On summary, the key point of  the new approach is that, the free surface is not regarded as a fully ampervlous 
boundary but just an approxamate lmpervaous one, on whach the normal seepage velocity is almost, but not exactly, 
equals to zero However, the pore water pressure on the free surface is defined as zero, which as just the same as the 
ordmary approach The principle of  the new approach as not conlradacted to the concept of  seepage Actually, 
seepage flow defmxtely takes place an sods above the free surface, but mostly at was explained to be merely reduced 
by capdlary force 
It must be point out that, the hnear Laplace equataon (1) as not accurate m descrthmg the steady seepage m 
unsaturated soil above the free surface A umfied nonhnear model should be adopted to descrthe the seepage flow 
above and below the free surface, and the overall dam is consadered as the possable seepage area instead of  only the 
part of  dam below the free surface 
In unsaturated sod mechamcs, there as a clear nonlinear relataon between permeablhty coefficaent k and pore 
pressure p as [12] 

kw- ks 
1 + a ( p ) .  (5) 

where, k~ is permeabthty coefficient for unsaturated sod , /q  as permeabdaty coefficaent for saturated sod, ), is the 
specify gravaty of  water, a and n are constants However, the relataon between k and total head H includes the effect 
of  elevataon head, at is convement to use pore pressure as the unknown varmble m equaUons (1)-(4) Let 

p(x, y,z) = y[H (x, y,z) - z(x, y)] (6) 
then (1)-(4) become 

kx(p ) + ky(p) +Oz kz(P)~z + m = O  (la) 

m domain/2 
p(x, y, z) = fi(x, y, z) (2a) 

on border St 

k~OPc°s(n'x)+kor. Y -~  cOs(n'y)+kz O-~P 

p(x, y, z) = 0 
onS2 

on ,74 

(3a) 

(4a) 

For an impervious boundary, (3a) becomes 

k x OPcos(n,x) + k aPcos(n,y) + k z aPcos(n,z) = - ~ z  c o s ( n , z )  (3b) 
ax ~Oy az 

Except usmg pore pressure p as the unknown variable instead of  using total head H, (In), (2a) and (4a) are almost 
slmdar to (1), (2), and (4) The only obvious difference is that when using pore pressure as the unknown variable, 
the boundary seepage thscharge in (3) has to be mothfied Even for an mapervlous boundary, there is a value that has 
to be mput on $2 
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Compare with the ordinary method, additional work is needed m preparing for the mput data, but equation (1 a) is a 
standard nonlinear seepage equataon, with a determined boundary condation (2a) and (3b), tt can be solved by many 
general commercial software Considering the advantage of  speed, precision, convenience, and function of  general 
commercml software, it is worth adopting this new approach 
Naturally, the crest configuration BCDE has zero pore water pressure, since the sod particles are in contact with the 
atmosphere However, due to the randomness of  the dlstrthution of  the pore between particles, at any location a 
short distance from the surface BCDE, it can be approximately regarded as mapervlous condition Since the earth 
and rock-fill dam usually has a large dimension, it is feasthle for the new approach to employ the crest configuration 
BCDE as an nnpervlous boundary 

Examples and dlscusmon 

Case 1 Uniform earth and rock-fiU dam 

In order to verify the effectaveness of  this new approach, seepage m a uniform earth and rock-fill dam shown m fig 
1 was analyzed nsmg general commercial software ABAQUS, which ts usually used for heat conduction analyms 
Geometry of the homogeneous dam m Fig 1 is that, slope of  upstream batter is 1 1 98, slope o f  downstream batter Is 
I 1 71 Width and elevation of  the crest Is 17 m and 45 m respectively The upstream elevation head is 40 m, the 
downstream elevation head is 0 m a and n m equation (5) are 0 15 and 6 respectively 
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Fig 2 FEM meshes of  a umform earth and rock-fill dam 

Chen provides the results of  position of  the free surface and distribution of  pore water pressure, using ordinary 
iteration [13] With the new approach, the mesh (shown m fig 2) can be generated with great flexththty related to 
the actual position of  the free surface The initial elevation of  the release point can be assumed freely along the 
downstream batter For convemence, tt can be assumed to be the downstream water level Table 1 hsts the results of  

each step of iteration 

Table 1 Results of  iteration 

Step of  
Iteration 

Assumed elevation Calculated elevation 
of  release point of  release point 

(m) (m) 
0 34 56 

17 28 20 98 
19 13 20 14 
19 64 19 64 

Relative 
Tolerance 

(%) 
200 
193 
51 
0 0  

The result of  convergence Is therefore 19 64 m 
The calculation revealed the following phenomena 
(1) If the assumed release point E Is hlgber than the real one, the calculated zero pore pressure contour still intersects 

the downstream batter at point E, wtnle m a part of  DG below the point E, the calculated value of  pore pressure 
is also zero This phenomenon is reduced by the enforced boundary condition of  gwen pore pressure m section 
FE on downstream batter In this case, the ordinary approach also has this kind of  difficulty It will gwe a free 
surface which stacks up near the release pomt The reason is the same as that mentioned above To solve this 
problem, the tterataon of the release point can be start out from the downstream water level, so that the assumed 
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elevatmn m each step o f  tteratlon will be kept lower than the actual value However, the convergent result mtght 
also be shghtly higher than the actual one Hence the iteration must  be kept m between the convergent result 
19 64 m and the last iteration one 19 26 m, the lowest point which satisfies condmon (4) is the actual release 
point After three more steps of  iteratton, it can be seen that 19 20 m is surely lower than the actual release point, 
while 19 26 m is probably higher than it The relatwe tolerance between these two values Is just 0 3% So 19 26 
m can be regarded as close to the elevation of release point Fig 3 shows the contours of  pore pressure of  this 
example In terms of  its physical concept, the contour with zero pore pressure is the phreatic hne These results 
coincided with those reported by Chen [13] 

Fig 3 Dmtrlbutlon o f  pore pressure (umt 10 2MPa) 

(2) It can be obtained just from the calculation (Figure 3) that, the pore pressure m the unsaturated soft above the 
free surface is negative, and even though the tmpervtous boundary are relaxed to BCDE, the calculated seepage 
rate above the free surface are really very small These results agreed with the quahtative explanation of  the 
classical seepage theory 

(3) If the assumed release point is not very far away from the actual one, the thstnbution of  pore pressure have little 
thfference from the actual one, so does the posttmn of  the phreatic lme except the points near the release point 
Consequently, the iteration tolerance need not be too small Wlth a relatively fine mesh  m the wcmity of  the 
possible release point, the modificataon of  mesh is not needed during Iteration 

Case 2 Northomogeneous earth and rock-fill dam 

The following is an example of a dam with permeable foundaUon and toe dram, quoted from Qmn and Yin (1994), 
which Is shown m Fig 4 The permeability coefficient of  the foundation of  sand layer is 125 times of  the earth dam 
and blanket 

.10.0 l ~ . d m  md Mml~ 

Umlnsm~mdon ~211.0 ~ x-~A 
.q~ 

I / - 

Fxg 4 A nonhomogeneous earth and rock-fill dam wlth permeable foundation and pervmus toe dram 

In calculation, the dam, foundaUon and toe dram are all considered m the mesh The toe drain was given a large 
value of  permeabihty coefficient (which is 10000 tLrnes larger than the pcrmeablhty coefficient of  the dam) 
According to the new approach, the initial elevation of  the release point is assumed as downstream water level At 
the first iteration, the calculated zero pore pressure contour mtersects w~th downstream batter of  the dram prism also 
at this elevation So that no more Iteration is needed Fig 5 illustrates the distribution of  the total j head and the 
posmon of  the free surface, which show good agreement with Qmn and Ym [14] In case of  dam with core wall, 
results can also be directly obtained w~thout iteration 
From the calculation, it ts shown that there exists no release section m the case when the dam has toe dram and the 
downstream water level is lower then the crest of  the prism This result also agreed with ordinary observation 
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8 0.26 
7 O.24 
6 O.22 
5 O.20 
4 0 18 
3 016 

~ h n ~  2 014 
1 012 
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Fig 5 Distnbutton of the total head (umt 10 2MPa) 

Conclusion 

Based on the unified unsaturated sod theory, a simple approach to determine the posmon of free surface m steady 
seepage ts developed m thts paper In steady seepage of earth and rock-fill dam, the crest configurataon can be 
regarded as tmpervlous boundary Only the elevation of the release point must be iterated m order to calculate the 
phreatac hne, instead of tteratmg the posmon of a series of nodes whtch form the phreatlc line m conventional 
method Consequently, the mmal mesh can be generated wxthout any lmutataon, and the fimte element mesh needs 
not be modffied during calculataon This can largely swnphfy the seepage analysts 
Based on the concepts discussed m the above sectton, the analysts can be smaphfied, and most of the ordinary 
seepage analysis can be carried out by general commercml software, also the speed, precxston, convemence, and 
function of general commerctal software m field analysis 
In the analysis of nonhomogeneous dam with toe dram or core wall, results can be obtained dxrectly without 
tteratxon Thxs is an unportant feature of the new approach 
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