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1. INTRODUCTION

The upper bound theorem of plasticity as a useful technique to solve the geotechnical problems
has been applied widely and extensively to bearing capacity analysis [1}7]. Using the upper- bound
theorem, Chen [1] determined the three factors of bearing capacity individually by assuming
a reasonable failure mechanism. Michalowski [6] and Soubra [7] presented alternative upper
bound methods to determine the three bearing capacity factors by using optimization techniques.
In practice, the ultimate bearing capacity is obtained by the superposition of in#uences of three

contributions of cohesion c, surcharge load q and unit weight of soil �. Chen [1], Michalowski
[6], Soubra [7] and Gri$ths [8], have found that the ultimate bearing capacity obtained by
considering the joined in#uences of the three factors for cohesion, surcharge load and unit weight
of soil is greater than that obtained by superposition of the in#uences using the three factors
determined individually. Michalowski [6] presents that the bearing capacity factors depend not
only the internal friction angle �, but also other material parameters, when the joined in#uences
of cohesion c, surcharge load q and unit weight of soil � are considered simultaneously.
Donald and Chen [9] proposed an upper-bound method to study the stability of the slopes.

This method is extended in this paper to study the bearing capacity of a footing with the
associated computer programmodi"ed. The objective of this paper is to seek the most reasonable
failure mechanism by using the upper-bound approach and an optimization method for the
calculation of the bearing capacity of a strip footing on soils without or with the joined in#uences
of the cohesion, surcharge load and soil weight. The three bearing capacity factors are obtained



Figure 1. Failure mechanism for the bearing capacity analysis.

by considering both joined in#uence and individual in#uence in two di!erent approaches. The
values of the three factors obtained in the two approaches are compared to each other and to the
published results. The critical slip lines (or failure mechanisms) for the joined in#uences and
individual in#uences are presented and discussed.

2. GENERAL EQUATION OF THE BEARING CAPACITY PROBLEM

Unless specially mentioned in this paper, a strip footing is located on a homogenous and
rigid-plastic soil medium under a plane strain condition. The soil above the footing base is
replaced with a surcharge load. The ultimate bearing pressure q

�
of the footing is equal to the

ultimate load that the foundation soil can hold at the state of incipient failure divided by the strip
footing area and can be generally expressed in the form (Terzaghi [10])

q
�
"cN

�
#qN

�
#0.5�BN� (1)

where N
�
, N

�
, N� are three bearing capacity factors related to the cohesion c, the surcharge

pressure q and the unit weight of the soil �, respectively.

3. THE UPPER-BOUND THEOREM FOR BEARING CAPACITY ANALYSIS

3.1. Multi-wedge discretization system

Donald and Chen [9] proposed a multi-wedge discretization system for slope stability analysis.
The same discretization mode is extended in this paper for bearing capacity analysis. The plastic
zone above the assumed slip surface is divided into a number of wedges with inclined interfaces.
Each of wedges moves as a rigid body. The plastic energy dissipation occurs at the interfaces
between adjoining wedges and at the base of wedges. Figure 1 shows a n-wedge discretization
system, in which only one wedge ABC is beneath the strip footing.
It is assumed that the magnitude of velocity of the "rst left wedge (No. 1 in Figure 1) in the overall

failuremechanism is unit since the absolute value of the velocity has no in#uence on the "nal results.
The velocity direction of wedge No. 1 is inclined at an angle of �

�
to the base of the wedge. If the

magnitude and direction of the "rst wedge is known, the absolute velocities of other wedges and
relative velocities at interfaces can be easily determined from velocity analysis [9]. Thus, the overall
kinematically admissible velocity "eld within assumed failure mechanism could be determined.
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3.2. Ultimate bearing capacity q
�
and general bearing capacity factors N

�
, N

�
and N�

According to the n-wedge discretization of soil mass under the strip footing and the kinematically
admissible velocity "eld determined previously, the work-energy balance equation for upper
bound analysis is written as
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where ��
���

DQ �
�
is the summation of rate of energy dissipation along the base of each wedge and

����
���

DQ �
�
is the summation of rate of energy dissipation along the interface between wedges. The

terms ����
���
=Q

�
, ��

���
=Q � and q*�B<* are the rates of work done by the surcharge load, the weight

of each wedge and the pressure acting on the footing, respectively. By calculating each term in
Equation (2) according to Donald and Chen [9], the general equation of bearing capacity of
footing using the upper-bound method can be given as
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where the superscript &*' in q*
�
denotes that the pressure on the footing is determined based on an

assumed (or trial) failure mechanism. The real bearing capacity of footing, that is, the ultimate
bearing capacity is obtained using an optimization method to search for the minimum value of
q*
�
in a large number of reasonable failure mechanisms. In Equation (3), c

�
and �

�
are the cohesion

and friction angle of soil on the base of Wedge No. i respectively. The c�
�
and ��

�
are the cohesion

and friction angle on the interface between wedges No. i and No. i!1. The l
�
, s

�
, h

�
are the length

of the topside, the base and interface of wedge No. i, respectively.
If the water pressure is not considered, the comparison of Equation (3) with Equation (1)

indicates that the three bearing capacity factors given by

N*
�
"�

�
�
���

(s
�
<
�
cos�

�
)#

���
�
���

(h
�
<�
�
cos ��

�
)��[B<� sin(��

!�
�
)] (4)

N*
�
"�!

���
�
���

l
�
sin(�

�
!�

�
)<

���[B<� sin(��!�
�
)] (5)

N*� "�!
�
�
���

(=
�
sin(�

�
!�

�
)<

�
)��[<� sin(��!�

�
) 0.5�] (6)

The "nal bearing capacity factors N
�
, N

�
and N� are the values of N*

�
, N*

�
, N*� which make

q*
�
minimum [11, 12]. It should be noted that the bearing capacity calculated by Equation (3) is

equivalent to the bearing capacity for a rough footing on soil, that is, there is no sliding between
the footing and the soil [7].

4. NUMERICAL SOLUTIONS OF N
�
, N

�
, N� AND q

�

Previous researchers normally "nd three factors N
�
, N

�
and N� one by one with a "nal failure

mechanism for each in#uence of cohesion c, surcharge q and unit weight of soil �. As matter of
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fact, these in#uences are coupled [6, 8]. Furthermore, the "nal failure mechanism of the coupled
in#uences may not be the same as that for each individual in#uence.
Without the in#uence of water pressure, Equation (3) based on the upper-bound theorem

can be used readily to seek the most reasonable failure mechanism for the joined (or coupled)
in#uence or individual in#uence. To consider the joined in#uences, the cohesion c, surcharge q,
and unit weight of soil � are non-zero simultaneously. The "nal failure mechanism is
determined by minimizing Equation (3). Once the "nal failure mechanism is determined,
the bearing capacity factors are also determined using Equations (4)} (6), which correspond to the
minimal value of the bearing capacity of a footing q

�
. The above method is called Method 1, the

corresponding bearing capacity factors are denoted as NI
�
, NI

�
, NI � (called joined bearing capacity

factors).
To obtain the conventional bearing capacity factors N

�
, N

�
, N� individually, for example, N

�
,

q and � are set to be zero in Equation (3). The factorN
�
is then obtained by minimizing Equation

(3) with a corresponding "nal failure mechanism. Similarly, the minimal value of N
�
can be

obtained by neglecting c and �. The minimal value of N� is obtained by neglecting c and q. The
bearing capacity factors determined individually in the above way are denoted as N

�
, N

�
, N� ,

which are refereed to as individual bearing capacity factors. The overall bearing capacity of
footing q

�
is determined by the superposition method. Herein, the method of determining the

individual bearing capacity factors is called Method 2.
The relationship of the joined bearing capacity factorsNI

�
,NI

�
,NI � and the individual factorsN

�
,

N
�
, N� and the di!erence in the associated "nal failure mechanisms are studied in this paper.

A strip rough footing with width of 1 m rests on a soil with 10 kN/m� of cohesion, 303 of friction
angle, 18.0 kN/m� of unit weight, and 10 kN/m� of surcharge pressure [7]. The minimal values of
individual bearing capacity factors N

�
, N

�
, N� are found to be 30.2, 18.5, 24.21, respectively with

the corresponding failure mechanisms shown in Figure 2(a), (b) and (c).
Using the method of superposition and the value of individual bearing capacity factorsN

�
,N

�
,

N� , the overall bearing capacity of the footing q
�����

is 704.89 kN/m�. If considering the joined
in#uences of cohesion, surcharge and unit of weight of soil, the joined bearing capacity factorsNI

�
,

NI
�
, NI � are found to be 31.48, 18.64, 26.11, respectively. The corresponding failure mechanism is

shown in Figure 2(d) with an overall bearing capacity q
�
of 732.36 kN/m�. A comparison of slip

surfaces for individual in#uence of N
�
, N

�
, N� and the joined in#uence is shown in Figure 2(e).

The di!erences are apparent. All calculated values of the three factors in comparison with those
obtained by Soubra [7] are presented in Table I.
It can be seen in Table I that bearing capacity factors NI

�
and N

�
or NI

�
and N

�
are very

close. But the value of NI � obtained using Method 1 (considering the joined in#uence) is
8.61 per cent greater that the value of N� obtained using Method 2. The ultimate bearing
capacity determined by Method 1 (considering the joined in#uences) is greater than that by the
simple superposition method. Michalowski [6], Soubra [7] and Gri$ths [8] had the same
observation, which implied that the superposition e!ect contributed by three individual factors is
on the safe side.
To further explore the relation of the joined bearing capacity factors NI

�
, NI

�
, NI � with

the individual factors N
�
, N

�
, N� , a strip footing of 1 m width on a homogenous soil is

considered. The cohesion c, unit weight of soil � and the surcharge q are 5, 20 and
10 kN/m�, respectively. The friction angle � varies from 10 to 453. The "nal results
are summarized in Table II. The variations ofNI

�
,NI

�
,NI � andN�

,N
�
,N� with friction angle � are

shown in Figures 3(a)}(c).
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Figure 2. Comparison of failure mechanisms for bearing capacity problem.
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Table I. Comparison of bearing capacity factors.

N
�
or NI

�
N

�
or NI

�
N� or NI � q

�
or q

�����
(kN/m�)

Present method 1 31.48 18.64 26.11 736.19
Present method 2 30.20 18.50 24.21 704.89
Soubra's method 1 726.13
Soubra's method 2 30.25 18.46 21.88 680.58

Note. Soubra's method 1 determines the overall bearing capacity of the same footing considering the joined in#uence.
Soubra's method 2 determines the bearing capacity of footing by superposition using individual bearing capacity factors
(Soubra [7]). Soubra [7] did not give values of the joined bearing capacity factors.

Table II. Comparison of joined factors NI
�
, NI

�
, NI � with individual factors N

�
, N

�
, N� .

� (deg.) Present method 1*Joined factors Present method 2*Individual factors
(q

�
!q

�����
)/

NI
�

NI
�

NI � q
�
(kN/m�) N

�
N

�
N� q

�����
(kN/m�) q

�
(%)

10 9.74 1.98 2.41 96.2 8.64 2.63 1.67 86.2 7.4
11 10.59 2.39 2.61 102.95 9.35 2.74 1.95 93.65 9.9
12 10.98 2.62 3.00 111.16 9.78 3.09 2.26 102.4 8.6
13 11.17 2.98 3.58 121.45 10.24 3.35 2.60 110.7 8.9
14 11.90 3.12 3.93 129.95 10.85 3.63 2.99 120.45 7.9
15 12.47 3.39 4.53 141.54 11.38 4.11 3.53 133.3 6.2
16 13.11 3.94 5.10 155.6 12.05 4.47 3.93 144.25 7.9
17 13.72 4.53 5.71 170.95 12.69 4.83 4.45 156.25 9.4
18 14.47 5.19 6.36 187.35 13.42 5.34 5.19 172.4 8.7
19 15.44 5.61 7.11 204.33 14.21 5.74 5.76 186.05 9.8
20 16.13 5.81 8.01 218.90 15.00 6.47 6.56 205.3 6.6
21 16.91 6.49 9.11 240.57 16.05 7.08 7.45 225.55 6.7
22 18.16 7.21 10.04 263.37 16.86 7.78 8.34 245.5 7.3
23 19.24 8.76 11.27 296.46 18.23 8.59 9.68 273.85 8.3
24 20.33 9.14 12.85 321.6 19.50 9.67 11.16 305.8 5.2
25 21.83 10.74 14.12 357.79 20.80 10.72 12.26 333.8 7.2
26 23.42 11.96 15.80 394.68 22.34 11.80 14.10 370.7 6.5
27 25.24 13.49 17.89 436.87 24.00 13.04 16.07 411.10 6.3
28 26.74 13.6 20.95 479.2 25.80 14.75 18.44 460.9 4.0
29 29.10 16.33 22.97 538.52 27.80 16.42 21.06 513.8 4.8
30 31.70 18.75 25.97 605.72 30.20 18.5 24.21 578.1 4.6
31 34.36 20.61 29.92 677.13 32.86 20.00 28.05 644.8 5.0
32 37.79 24.22 34.38 774.97 35.60 23.25 32.82 738.7 4.9
33 41.29 27.36 39.40 874.02 38.72 26.10 37.51 829.7 5.3
34 45.39 30.85 45.94 994.7 42.50 29.86 44.04 951.5 4.5
35 50.18 35.66 53.60 1143.52 46.50 33.12 50.94 1073.1 6.6
36 54.48 38.73 67.21 1331.32 51.25 37.84 60.60 1240.65 7.4
37 60.40 43.74 78.78 1527.32 55.90 43.39 70.83 1421.70 7.4
38 67.66 52.31 93.76 1797.80 62.57 47.72 84.64 1636.45 9.9
39 75.88 60.76 110.34 2090.41 68.24 54.95 101.78 1908.5 9.5
40 85.56 70.62 129.66 2430.72 75.90 64.90 122.95 2258.00 7.6
41 96.22 83.79 156.93 2888.39 85.61 74.90 148.28 2659.85 8.6
42 106.91 93.45 189.84 3367.45 98.42 87.90 181.39 3185.00 5.7
43 120.59 109.83 231.68 4017.76 109.21 104.47 220.51 3795.85 5.8
44 137.59 131.28 284.24 4843.25 123.69 119.19 270.01 4510.45 7.4
45 157.17 154.69 353.27 5856.52 141.38 142.34 331.22 5442.50 7.8

Note. The strength parameters used in this Table are cohesion c"5 kN/m�, surcharge load q"10 kN/m�, and unit
weight of soil �"20 kN/m�. The width of footing B"1 m.
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Figure 3. Comparison of bearing capacity factors.

Figure 3 shows that the joined bearing capacity factors NI
�
and NI � are greater than the

individual factors N
�
and N� . The N�

is almost the same as the individual factor NI
�
. The overall

bearing capacity q
�
of the footing with joined in#uences are greater than q

�����
determined by the

superposition method. The relative di!erence is within 10 per cent.
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Table III. Comparison of present N� values with those in the literatures.

� (3) Present method 1 Present method 2 Terzaghi [10] Meyerhof [13] Vesic [14] Bolton and
Lau [15]

20 8.01 6.56 5.0 2.87 5.39 5.97
25 14.12 12.26 9.7 6.77 10.88 11.6
30 25.97 24.21 19.7 15.67 22.4 23.6
35 53.60 50.94 42.4 37.15 48.03 51.0
40 129.66 122.95 100.4 93.69 109.41 121.0
45 353.27 331.22 297.5 262.74 271.76 324.0

5. COMPARISON OF PRESENT RESULTS WITH OTHER PUBLISHED RESULTS

5.1. N� factor

As well known, there have been a great number of solutions for N� in the literatures using
di!erent methods. The di!erences among these solutions are substantial. The equations for the
N� factor given by Terzaghi [10], Meyerhof [13] and Vesic [14] are as follows:

N� (Terzaghi)"
tan �
2 �

K
��

cos� �
!1� (7)

for rough footing [10]

N�(Meyerhof )"(N
�
!1) tan (1.4�) (8)

N� (Vesic)"2(N
�
#1) tan� (9)

In addition, Bolton and Lau [6] proposed the following equation for rough footing by the
slip-line method:

N�(Bolton & Lau)+(N
�
!1) tan (1.5 �) (10)

It should be noted that all the above methods consider the in#uence of the unit weight of soil
individually.
Values of N� obtained by Terzaghi [10], Meyerhof [13], Vesic [14] and Bolton and Lau [15]

are tabulated in Table III in comparison with the results obtained by present methods. Figure 4
shows a comparison of the N� vs. friction angle �. It can be seen that N� factor of present
Method 2 (not considering the joined in#uence) is close to that given by Bolton and Lau [15].
However, values of N� factor of present Method 1 (considering the joined in#uence) are greater
than all other values as shown in Table III.
Chen [1] gave rigorous upper-bound solution in the framework of the limit analysis theory,

based on the Prandtl failure mechanism, which is composed of triangular active wedge beneath
the footing, two radial log-spiral shear zones and two triangular passive wedges. Michalowski [6]
proposed an upper-bound method considering all joined in#uences of cohesion, surcharge and
soil weight, however, the "nal factor N� is determined by considering the individual in#uence of
unit weight of soil in accordance with other existing proposals. Soubra [7] gave the numerical
solution based on the upper bound theorem. The upper-bound solutions given by the present
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Figure 4. Comparison of present N� factor with results of other authors.

Table IV. Comparison of present N� with results by other upper-bound methods.

� (3) Present method 1 Present method 2 Chen [1] Michalowski [6]
(rough)

Soubra's [7]
method 2

20 8.01 6.56 5.87 4.47 4.67
25 14.12 12.26 12.4 9.77 10.06
30 25.97 24.21 26.7 21.39 21.88
35 53.60 50.94 60.2 48.68 49.62
40 129.66 122.95 147.0 118.83 120.96
45 353.27 331.22 401.0 322.84 328.88

methods and those given by Chen [1], Michalowski [6] and Soubra [7] are listed in Table IV.
Figure 5 shows a comparison of the N� vs. friction angle �. The solutions of present Method 2
(not considering the joined in#uence) are close to those given byMichalowski [6] and Soubra [7].
However solutions of Method 1 (considering the joined in#uences) are close to those given by
Chen [1].

5.2. N
�
and N

�
factors

In the literature N
�
and N

�
obtained with di!erent methods are generally expressed in the

following forms:

N
�
"(N

�
!1) cot� (11)

N
�
"e� �	
 � tan� (45#�/2) (12)

A comparison of present solutions to N
�
with results of Equation (11) and Soubra's upper

bound numerical solutions [7] is listed in Table V. Similarly, a comparison of N
�
is listed in

Table VI. It can be seen from Tables V and VI that the N
�
and N

�
of present Method 2 (not

considering the joined in#uence) are basically identical with those of other methods. However,
the N

�
and N

�
of present Method 1 (considering the joined in#uence) are slightly greater than

those of other methods.
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Figure 5. Comparison of present N� factor with results of upper bound methods.

Table V. Comparison of present N
�
with those of other methods.

� (3) Present method 1 Present method 2 Equation (11) Soubra's [7] method 2

20 16.13 15.00 14.83 14.87
25 21.83 20.80 20.71 20.78
30 31.70 30.20 30.13 30.25
35 50.18 46.50 46.33 46.35
40 85.56 75.90 75.25 75.80
45 157.17 141.38 133.73 135.09

Table VI. Comparison of present N
�
with those of other methods.

� (3) Present method 1 Present method 2 Equation (12) Soubra's [7] method 2

20 5.81 6.47 6.4 6.41
25 10.74 10.72 10.7 10.69
30 18.75 18.16 18.4 18.46
35 35.66 33.12 33.4 33.43
40 70.62 64.90 64.1 64.55
45 154.69 141.38 134.70 135.91

6. CONCLUSIONS

The present methods, which are based on the upper-bound theorem, derive a general bearing
capacity equation of strip footing by considering both joined in#uence and individual in#uence of
cohesion, surcharge load and unit weight of soil. The most reasonable failure mechanism should
be searched for among all the kinematically admissible ones by the optimization method. The
bearing capacity factors considering both joined in#uence and individual in#uence have been
obtained and compared to results published in literatures.
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Based on the above analysis and results presented, the following conclusions may be drawn:

(a) The failure mechanism of the rough footing bearing capacity problem for the joined
in#uence is di!erent from N

�
, N

�
, N� mechanism considering each individual in#uence.

(b) The bearing capacity factor considering the unit weight of soil for the joined in#uence is
larger than that for the individual in#uence. The overall bearing capacity of the footing for
the joined in#uence is larger than that obtained by the superposition method using
individual factors.

(c) The results obtained by the present methods starting with a more general failure mecha-
nism are close to those by Michalowski [6] and Soubra [7]. The present methods can be
extended to solve more complicated bearing capacity problems.
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