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Abstract: A new method for stability analysis in soils and rocks is presented, based on the upper bound theorem of classical
plasticity. The sliding mass is divided into a small number of discrete blocks, with linear interfaces between blocks and either
linear or curved bases to individual blocks. By equating the work done by external loads and body forces to the energy
dissipated in shearing, either a safety factor or a disturbance factor may be calculated. The rigorous theoretical background is
established, from which it may be demonstrated that for several well-defined classical slope problems the equations for the
multi-block solution reduce to the published closed-form solutions. Powerful optimization routines are provided in the
computer program EMU to search for the critical failure mechanism giving the lowest factor of safety. Several examples are
given to demonstrate that, for problems where the exact answers are known, the new method produces accurate values of
safety factor and predictions of failure mechanism. Applications to practical problems have shown that the new method is as
simple as the conventional limit equilibrium methods for practitioners.
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Résumé: L’on présente une nouvelle méthode d’analyse de stabilité dans les sols et les roches basée sur le théorème de la
limite supérieure de la plasticité classique. La masse glissante est divisée en un petit nombre de blocs discrets avec des
interfaces linéaires entre les blocs et des bases linéaires ou courbes pour les blocs individuels. En mettant en équation le travail
fait par les charges extérieures et par les forces du poids propre avec l’énergie dissipée durant le cisaillement, un coefficient de
sécurité ou un facteur de perturbation peuvent être calculés. L’on établit la base théorique rigoureuse est à partir de laquelle il
peut être démontré que, pour plusieurs problèmes de pente classiques bien définis, les équations pour la solution de blocs
multiples se réduit aux solutions exactes publiées. L’on fournit des routines efficaces d’optimisation dans le programme
d’ordinateur, EMU, pour la recherche du mécanisme de rupture critique donnant le coefficient de sécurité le plus faible. L’on
donne plusieurs exemples qui démontrent que, pour les problèmes pour lesquels les réponses exactes sont connues, la nouvelle
méthode fournit des valeurs du coefficient de sécurité et des prédictions du mécanisme de rupture précises. Des applications à
des problèmes pratiques ont montré que la nouvelle méthode est aussi simple pour les praticiens que les métohodes
conventionnelles d’équilibre limite.

Mots clés: stabilité des pentes, théorème de limite supérieure, méthode d’énergie, coefficient de sécurité, méthodes
d’optimisation.
[Traduit par la rédaction]

Introduction

Over several decades, the limit equilibrium method has almost
dominated the profession for examining the stability of slopes,
embankments, and other soil and rock structures. The method,
originating from a basically empirical background (Fellenius
1936), has been greatly improved by Janbu (1973), Mor-
genstern and Price (1965), Spencer (1967), Sarma (1973),
Fredlund and Krahn (1977), Chen and Morgenstern (1983),
and other researchers to satisfy the complete requirements for
force and moment equilibrium and to accommodate general-
ized slip surfaces. Recent updating of the method includes the
automatic searching for the minimum factor of safety and its
associated critical slip surface using the methods of optimiza-
tion (Celestino and Duncan 1981; Nguyen 1985; Chen and Shao

1988; etc.). However, there is no theoretical reason which ade-
quately explains the success of its extensive applications.

On the other hand, the potential of extending the plasticity
method to soil and rock stability analysis has been investigated
by many researchers. Early efforts were made by Frontard
(1922) and Jaky (1936), but neither of these methods was
based on realistic failure surfaces or numerically tractable
methods. Sokolovski (1954), Fang and Hirst (1970), Booker
and Davis (1972), and Graham (1973) employed plasticity the-
ory, mainly based on the slip-line fields method, and limited
their studies to problems with simple geometries. Later work,
mainly concerned with the upper bound analysis, was con-
ducted by Finn (1967), Chen and Snitbahn (1975), Karal
(1977a, 1977b), Chen and Chan (1984), and Izbicki (1981).
Extensions of the upper bound solutions to nonlinear failure
envelopes have been investigated by Baker and Frydman
(1983), Zhang and Chen (1987), Drescher and Christopoulos
(1988), and Collins et al. (1988). Gussmann (1982) presented
the kinematical element method, which divides a soil mass into
finite elements and calculates the velocity distribution and en-
ergy dissipations of these elements. Sloan (1988, 1989) used
finite elements and linear programming to perform both lower
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bound and upper bound analysis. His work represents an at-
tempt to obtain “bound solutions” by numerical methods on a
theoretically rigorous foundation. Similar approaches were
presented by Chuang (1992a, 1992b), who employed a pair of
primal–dual linear programs that encoded kinematic and static
requirements, respectively, in a finite element discrete version.
Rotational displacements were included in his work.

Despite the great volume of research work, reports of its
practical applications appear to be rare. It is not difficult to
understand that the limit analysis method could not be used
extensively in the profession unless the following problems
have been properly solved.

(1)Numerical tractability—Baker and Frydman (1983) and
Zhang and Chen (1987), among others, employed calculus of
variations to find the least upper bound and consequently lim-
ited themselves to only a few demonstrative examples that had
simple slope geometries and material properties. As the ma-
jority of practical problems are non-analytic, some numerical
techniques must be employed to accommodate the varied ge-
ometry and heterogeneity commonly encountered in geotech-
nical problems. It has been found, in the area of limit
equilibrium methods, that the techniques of optimization have
been successfully used to minimize the factor of safety. Their
extensions to limit analysis methods certainly deserve investi-
gation.

(2) Rational failure mechanism—Partly because of the nu-
merical difficulties mentioned previously, most researchers
employed logarithm spirals as failure surfaces and assumed the
sliding mass to be a rigid body within which the internal energy
dissipations are totally ignored (Baker and Frydman 1983;
Zhang and Chen 1987). Karal (1977a, 1977b) has correctly
pointed out that the sliding mass is generally formed by a
“composed mode” which includes both rigid and “soft” parts.
Within the latter, energy dissipation cannot be ignored. It is
suspected that these simplifications would be too great to pro-
duce sufficiently accurate solutions.

(3) Demonstrations of feasibility and validity—The limit
analysis method will not prove to be competitive with the limit
equilibrium method until sufficient evidence has been gained
to demonstrate its validity. Comparing the results with well-
known closed-form solutions is a means commonly employed
(Chen 1975; Finn 1967). During the past decade, the first
author and P. Giam worked intensively on a theoretically rig-
orous and numerically efficient upper bound limit analysis
method (Giam and Donald 1991). A multiwedge failure
mechanism was developed to include the energy dissipations
both on the slip surface and within the sliding body. The early

work has been further updated by the authors of this paper with
a multiblock failure mechanism which provides a fully ana-
lytical formulation of upper bound solutions capable of pro-
ducing a series of closed-form solutions originally offered by
Sokolovski (1954). Extensions to bearing capacity and three-
dimensional slope stability analysis problems (Chen 1995)
have shown the great potential of the new method in providing
innovative tools to other areas where simple and complete nu-
merical methods are still not available. Although the research
findings have been presented in several papers (Giam and
Donald 1991; Donald and Chen 1995; Chen 1995), this paper
for the first time completely covers the theoretical background,
numerical techniques, validations, and extensions of this new
upper bound slope stability analysis method.

Review of the numerical approach to the
upper bound method

The upper bound theorem
The extensions of the upper bound theorem in plasticity to
solving geotechnical problems have been explored by Chen
(1975). When applying the upper bound theory to slope stabil-
ity problems, it is assumed that during failure, a slip surface
Γ divides the slope into a plastic failure zone, in which the
stress state at any point is either on or inside the yield surface,
and an elastic zone, in which the displacement at any point is
virtually negligible. Shear failure exclusively dominates along
the slip surface and within the plastic zone (Fig. 1).

The statement of the upper bound theorem, particularly
concerned with slope stability analysis, can then be described
as follows. Assign a kinematically admissible strain increment
field ε

.
ij
∗ in the plastic zoneΩ∗, and the velocityV* along the

slip surfaceΓ∗, then the external surface loadT* calculated by
the equation

[1] ∫
Ω∗

σij
∗ ε

.
ij
∗ dΩ + ∫

Γ∗
dDs

∗ = WV∗ + T∗V∗

will be either greater than or equal to the real surface loadT,
which is associated with a real failure mechanism represented
by the plastic zoneΩ and the slip surfaceΓ, whereσij

∗ is the
stress in the plastic zone that producesε

.
ij
∗ according to the

normality flow rule,Ds is the energy dissipation on the slip
surface,W is the weight of the sliding mass, andV is the
velocity at the points at whichW andT apply.

The slope failure mechanism considered herewith generally
offers a continuous stress as well as a velocity field except
along the slip surface where the plastic velocityV changes
abruptly to zero at the elastic zone through an infinitesimally
thin shear band (Fig. 2). Based on the associated flow law and
Mohr–Coulomb failure criterion, it can be shown (Chen 1975;
Giam and Donald 1991) that the velocity at the shear bandV
inclines at an angleφ to the band and the energy dissipation
along this slip surface per unit area is (Fig. 2)

[2] dD = τVt + σnVn

= (cosφ ⋅ τ + sinφ ⋅ σn)V

= (c cosφ − u sinφ)V

wherec andφ are shear strength parameters;Vt andVn are com-
ponents ofV in tangential and normal directions, respectively;

Fig. 1.Failure mechanism of the upper bound approach. The real
failure mechanism is the shaded area.
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u is the pore pressure applied on the shear band;σn andτ are
the normal and shear stress on the shear band, respectively.
Equation [2] indicates that the energy dissipation based on the
Mohr–Coulomb criterion can be conveniently calculated with-
out the knowledge of the stresses on the shear zone. This has
contributed significantly to the success of the approach de-
scribed herein.

The procedure of solving structural problems includes as-
suming a series of compatible displacement patterns and cal-
culating their respective loadT* based on [1]. The one
associated with the minimumT* will most likely be the true
load that brings the structure into failure. The concept is re-
ferred to as the least upper bound approach.

The approximated failure mechanisms: multiwedge
systems

For a slope concerned, the plastic zone is divided into a number
of wedges which are created by inclined straight-line inter-
faces and bases. Figure 3 shows a three-wedge system. Each
wedge moves with a velocityV that inclines at an angleφ to
the slip surface, creating a relative velocityVj to its neighbour-
ing wedges along the interfaces. The wedge itself moves as a
whole. No energy dissipation will develop within the wedge
body. For a system containingn wedges andn – 1 interfaces,
[1] is then replaced by its approximation

[3] ∑
k=1

n−1

Dk
j + ∑

k=1

n

∆Dk
s = WV∗ + T∗V∗

where the first and second terms refer to the energy dissipa-
tions developed on the interfaces and slip surface, respectively,
both calculated based on [2].

The disturbance that brings about the failure mechanism
Most structural problems are concerned with the system that is
not at failure and the question needing to be answered is how
large an external disturbance need be to bring this system from
a safe state to a state in which the failure mechanism appears.
In slope stability analysis there are several alternatives for de-
fining the external disturbance.

(1) If there is a loadTo applying on the surface, then it can
be increased toT at which failure happens. The disturbance
factorη is then defined as

[4] η = ηt =
T − To

To

This alternative, defined as alternative 1, can be conveniently
used in bearing capacity problems.

(2) The failure mechanism is brought about by a pseudo-
horizontal body force whose magnitude is determined by
ηbW, whereW is the self-weight of the plastic zone. The value
of ηb that brings the failure is called the “coefficient of critical
acceleration” (Sarma 1973). This alternative, defined as alterna-
tive 2, is preferred in slope stability analysis, since surface loads
in many cases do not exist. Equation [3] can be replaced by

[5] ∑
k=1

n−1

Dk
j + ∑

k=1

n

∆Dk
s = WV∗ + ToV∗ + ηbW

__
V∗

where W
__

is a force in the negativex axis direction with a
magnitude ofW.

(3) The failure mechanism is created by decreasing the
shear strength parameters by a coefficient called factor of
safety,F, which provides a new cohesionce and friction angle
φe by the definitions

[6] ce = c
F

[7] tanφe =
tanφ

F

Also based on [1],F can be obtained by solving the following
equation using iterations:

[8] ∑
k=1

n−1

Dek
j + ∑

i=1

n

∆Dei
s = WV∗ + ToV∗

The subscript e indicates that the corresponding terms are cal-
culated based once and φe, which involve the unknownF.
Since [8] is nonlinear,F will be obtained by trial and error or
by the Newton–Raphson method. Sarma (1973) suggested an
iteration method based on the critical acceleration concept.

To facilitate presentation, the symbolsce andφe are invari-
ably used for all three alternatives in the remaining part of the
paper. This means that a factor of safety of unity is actually
implied when alternatives 1 or 2 are concerned.

Calculation of the compatible velocity field
Let us observe the two adjoining wedges as shown in Fig. 4.
The left and right wedges move with the absolute velocitiesVl

Fig. 2.Energy dissipation on a shear band. Fig. 3.A three-wedge failure mechanism.
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andVr which incline at anglesφel andφer to their bases, orθel
andθer to thex axis, respectively. The relative velocity of the
left wedge with respect to the right one along the interface is
represented asVj, which inclines at an angleφej or (π − φej),
depending on whether the left wedge moves upward or down-
ward with respect to the right one, an important consideration
that will be discussed subsequently.

To allow the velocities assigned to then-wedge failure
mechanism to be kinematically compatible, the two adjoining
wedges must not move to cause overlap or indentation. This
implies that the velocity hodograph must be closed, i.e.,

[9] Vr + Vj = Vl

Solving [9], we obtain

[10] Vr = Vl

sin(θl − θj)
sin(θr − θj)

[11] Vj = Vl

sin(θr − θl)
sin(θr − θj)

whereθl, θr, andθj are measured from the positivex axis in a
counterclockwise direction, i.e., 0≤ θ ≤ π, andδ is the inclina-
tion of the interface measured from the positivey axis to the
positivex axis. Starting from the first interface, the velocity of
any wedge at the right side of thekth interface, represented as
V, can be expressed in terms ofV1, the velocity of the first
wedge by successive calculations based on the equation

[12] V = κV1

where

[13] κ = ∏
i=1

k
sin(αi

l − φei
l − θi

j)
sin(αi

r − φei
r − θi

j)

whereα is the inclination of the base to the horizontal, and the
superscripts l and r refer to the values at the left and right sides
of the interfaces, respectively. The multiplication starts from

the first interface to thekth one that separates thekth and (k +
1)th wedges.

It has been noted that the left wedge can move either up-
ward or downward with respect to the right wedge. The former
case (refer to Fig. 4), defined as case 1, is most usually encoun-
tered. However, ifVr lies overVl, and consequentlyθr < θl as
illustrated in Fig. 5, the left wedge will move downward in-
stead of upward with respect to the right wedge. This situation,
defined as case 2, occurs, for example, where the base of the
left wedge is a weak band that offers a low friction angle and
produces abrupt change inα along the slip surface. The rela-
tive velocity in this case would incline at an angle of (π −φe)
rather thanφe to the interface.

In general, we define

[14] θl = π + αl − φel

[15] θr = π + αr − φer

and

[16] θj =
π
2

− δ + φej for case 1

[17] θj =
3π
2

− δ − φej for case 2

It is worth noting that this argument applies to all methods
that employ nonvertical slices, such as those proposed by
Sarma (1979) or Kovari and Fritze (1984). If the direction of
possible movement between two slices is not properly consid-
ered, these methods will also give incorrect answers on some
occasions, particularly where the base failure surface contains
sections of reverse curvature.

Conditions of kinematic admissibility
Determining the velocity field by [10] and [11] is subject to the
conditions of kinematic admissibility which state as follows:

[18] θl > θj > θr − π for case 1

[19] θl < θj < θr + π for case 2

Fig. 4.Velocity compatibility between adjacent blocks. The left
wedge moves upward. (a) Velocities of the blocks. (b) Velocity
hodograph.

Fig. 5.Velocity compatibility between adjacent blocks. The left
wedge moves downward. (a) Velocities of the blocks. (b) Velocity
hodograph.
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Satisfaction of these conditions implies that the values ofVr
and Vj calculated by [10] and [11] must be positive ifVr is
positive.

In summary, we present the following kinematic conditions
for the multiwedge failure mechanism. The formal demonstra-
tion is given elsewhere (Donald and Chen 1992).

Case 1: the left wedge moves upward, i.e.,θr > θl, and it is
required thatθj take the definition of [16] and

[20] θl − θj > 0

Case 2: the left wedge moves downward, i.e.,θr < θl, and
it is required thatθj take the definition of [17] and

[21] θl − θj < 0

and

[22] θr − θj > − π

The energy method formulated in terms of continuous
media

If a part of the slip surface has a smoothly curved shape with
uniform shear strength parameters, i.e.,φe is constant andα is
continuous in an interval (xk, xk+1) (refer to Fig. 6), the velocity
at any point can be calculated by integration rather than suc-
cessive multiplications.

Suppose the velocity at point A (refer to Fig. 6), with its
abscissa valuex, is V, which has an increment dV when A
moves to B, which has the abscissa value (x + dx). Substituting
V andV + dV for Vl andVr, respectively, in [10], we have

[23] V + dV = V
sin(α − φe − θj)

sin(α + dα − φe − θj)

Neglecting magnitudes with the orders higher than dα, we
have

[24] − dV
V

= cot(α − φe − θj)
dα
dx

dx

Integration of [24] yields

[25] V = Vk
r exp




−∫

xk

x

cot(α − φe − θj)
dα
dξ

dξ




whereVk
r is the velocity at the right side of thekth interface,

andξ is a dummy variable substituting forx.By virtue of [10],
[25] can be written as

[26] V = Vk
l

sin(αk
l − φek

l − θj)
sin(αk

r − φek
r − θi)

× exp



−∫

xk

x

cot(α − φe − θj)
dα
dξ

dξ




Since

[27] Vk
l = Vk−1

r exp



−∫

xk−1

xk

cot(α − φe − θj)
dα
dξ

dξ




we have the following equation calculating the velocity field
for the multiblock failure mechanism:

[28] V = Vk−1
r

sin(αk
l − φek

l − θj)
sin(αk

r − φek
r − θj)

× exp



−∫

xk−1

x

cot(α − φe − θj)
dα
dξ

dξ




= Vo ∏
i=1

k
sin(αi

l − φei
l − θi

j)
sin(αi

r − φei
r − θi

j)

× exp



−∫

xo

x

cot(α − φe − θj)
dα
dξ

dξ




= κVo exp



−∫

xo

x

cot(α − φe − θj)
dα
dξ

dξ




= E(x)Vo

where

[29] E(x) = κ exp



−∫

xo

x

cot(α − φe − θj)
dα
dξ

dξ




Equation [28] indicates that the velocity at any point of the slip
surface, located right of thekth discontinuity ofφe or α, can be
calculated by direct integration within the interval (xo, x),
based onVo, the velocity at the left end of the slip surface. The
effect of possible discontinuities inφe and α has been ac-
counted for by the coefficientκ.

Neglecting high-order terms, [11] can also be reduced to

[30] Vj = −V cosec(α − φe − θj)dα

= −Vo cosec(α − φe − θj)E(x)dα

Equation [30] is applicable only whenφe is constant andα is
continuous. It indicates that within the interval (xk, xk+1), Vj is
an infinitesimally small magnitude with the order of dα. If the
slip surface is a straight line, i.e., dα/dx = 0, Vj will be zero.
This means that the energy dissipation within a wedge body is
zero if φe is uniform along the base of the wedge.

With the approaches described herein, we are able to define
a multiblock failure mechanism (refer to Fig. 6). The plastic
zone of the slope is divided by a number of blocks that have
curved bases with constantφe. Each block will be further di-
vided into a number of slices, or wedges, whose interfaces
incline at angles ofδ from the vertical, which are determined
by linear interpolation based on the corresponding values at
the left and right interfaces of the block. The velocities along
the slip surface and the interfaces can be readily determined

Fig. 6.The multiblock failure mechanism.
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by [28] and [30], except at the point of discontinuities where
Vj is determined by [11].

Calculations of the work and energy dissipations
With the velocity field obtained for a specified failure mecha-
nism, the work done by the external loads and the internal
energy dissipations of a block can be calculated by integration
or summations.

Considering a slice in a block with a base width dx, and
takingVo = 1, the various terms of work and energy dissipation
for this slice can be determined as follows.

Work done by the body forces
The body forces applying on a slice include (i) self weight dW,
(ii ) pseudo-seismic forceη′ dW, and (iii ) pseudo-disturbance
force ηb dW that brings about the failure mechanism. Work
done by these body forces is

[31] d(WV∗) = dW[sin(α − φe) + (η′ + ηb)cos(α − φe)]E(x)

Work done by the surface loads
Surface loads should be transferred to the base of the slice
where integration is made and are represented by dTx and dTy,
respectively. For the case of disturbance alternative 1, another
ηt dTx andηt dTy are added. The work done by the surface loads
and the pseudo-disturbance force is

[32] d(TV∗)

= [(1 + ηt)dTy sin(α − φe) + (1 + ηt)dTx cos(α − φe)]E(x)

The positive directions of the external forces that do work are
defined to be opposite to the coordinate axis.

Internal energy dissipations
The internal energy dissipations are contributed by two parts:
(i) the energy dissipation along the base of a slice

[33] dDs = (ce cosφe − u sinφe)secα E(x)dx

and (ii ) the energy dissipation along the interface between two
adjoining slices at the point of discontinuity and within the
blocks, which are calculated separately.

If an interface is located at a point of the slip surface where
α is continuous andφe is constant, the energy dissipation due
to an increment inα between the two slices can be calculated
based on [30] as

[34] dDj = −(ce
j cosφe

j − uj sinφe
j )L cosec(α − φe − θj)E(x)dα

whereL is the length of the interface.
If an interface is located at the point of the slip surface

whereα or φe changes abruptly, the energy dissipation at this
particularkth interface is calculated based on [11] as

[35] ∆Dk
j = −(ce

j cosφe
j − uj sinφe

j )k Lk

× cosec(αr − φe
r − θj)k sin(∆α − ∆φe)k El(xk)

where∆α and∆φe are the increments inα andφ from the left
side to the right side of the interface, respectively, and the
superscript l represents the corresponding values at the left side
of the interface.

Formulations for the upper bound approach
Substituting [31]–[35] into [3], [5], and [8], we obtain the for-
mulas to calculate the disturbance factors for various alterna-
tives with the following definitions:

[36] G = ∫
xo

xn


(ce cosφe − u sinφe)secα −




dW
dx

+
dTy

dx




sin(α − φe)−



η′ dW

dx
+

dTx

dx




cos(α − φe)



E(x)dx

− ∫
xo

xn

(ce
j cosφe

j − uj sin φe
j ) L cosec(α − φe − θj)

dα
dx

E(x)dx − ∑(ce
j

k=1

n−1

cosφe
j − uj sin φe

j )k Lk cosec(αr − φe
r − θj)k sin(∆α − ∆φe)k El(xk)

[37] Gb = ∫
xo

xndW
dx

cos(α − φe)E(x)dx

[38] GT = ∫
xo

xn



dTy

dx
sin(α − φe) +

dTx

dx
cos(α − φe)





E(x)dx

For alternative 1, the disturbance coefficient of the propor-
tional pseudo-surface load is

[39] η = ηt = G
GT

For alternative 2, the coefficient for the critical acceleration is

[40] η = ηb = G
Gb

Note again that for alternatives 1 and 2 the symbolsce andφe
involved in these equations represent the actual valuesc and
φ, implying thatF = 1.

For alternative 3, the factor of safety is calculated by solv-
ing the equation

[41] G = 0

in which F is involved ince andφe. Iterations are necessary to
find F.

Numerical techniques for finding the least
upper bound

The method of optimization
To determine the critical failure mode that gives the minimum
factor of safety, various methods of optimization have been
employed. A slip surface is divided by a number of nodal points
A1, A2,..., Am (Fig. 7) with coordinates given by (i = 1, 2,...,m):

[42] Zi = 



xi

yi




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Each pair of contiguous nodal points is connected by a straight
line or a smooth curve. The smooth curve is generated by
spline functions and is generally preferred unless a weak band,
such as the part A2A3 in Fig. 7, is simulated. At each nodal
point, an interface is assigned with its inclination designated as
δ. The value of factor of safetyF, or the disturbance factorη,
can then be determined by solving either [39], [40], or [41].
During the integrations, each block is further divided into a
number of slices to accommodate possible changes in geome-
try and shear strength parameters.

F andη are then expressed as functions with respect tox1,
y1, x2, y2,...,xm, ym, δ1, δ2,..., δm for m nodal points:

[43] F = F (Z, δ)

= F (x1, y1, x2, y2,...,xm, ym, δ1, δ2,...,δm)

[44] η = η (Z, δ)

= η (x1, y1, x2, y2,...,xm, ym, δ1, δ2,...,δm)

The task of evaluating the stability of a slope becomes a
numerical problem of finding a set of variablesZ andδ that
gives the minimumF or η with the associated slip surface
connected by the nodal points B1, B2,..., Bm. The technique of
finding the minimum factor of safety is similar to that in con-
ventional methods as discussed by a number of authors (Baker
1980; Celestino and Duncan 1981; Nguyen 1985; Li and White
1987; Sun 1984; Chen and Shao 1988).

Chen (1992a, 1992b) has discussed the difficulties in find-
ing the global minimum factor of safety. A method called ran-
dom search has been proposed and proved to be helpful in
approaching the critical failure mechanism.

A computer program EMU (Energy Method Upper-bound)
has been coded to perform various practical stability analysis
problems, including the ship lock slope of the Three Gorges
Project in China, with satisfactory results.

Validations of the numerical method
The validity and feasibility of the new method have been as-
sessed by different approaches as described herewith.

Comparison of the governing equation (eq. [39]) with the
closed-form solution

Figure 8 shows a slope composed of uniform material with
cohesionc and friction angleφ. It is subjected to a uniform

vertical surface loadq, but the unit weight of the material is
zero. Based upon the slip-line fields method and the Sok-
olovski (1954) basic equations, it is possible to find the closed-
form solution to the limit loadq:

[45] q = c cotφ




1 + sinφ
1 − sinφ

exp[(π − 2χ) tanφ] − 1




whereχ is the inclination of the slope from the horizontal. The
critical slip surface consists of three lines. The straight lines
AB and CD incline at an angle ofµ to the slope surface and the
vertical, respectively, whereµ is defined as

[46] µ =
π
4

−
φ
2

BC is a log-spiral line with its left and right interfaces BO and
CO inclined at the angleµ to the slope surface and the vertical,
respectively.

It is possible to demonstrate that for this particular problem,
with the known slip-lines, [45] is identical to [39]. For details,
refer to Donald and Chen (1992).

Comparisons of the numerical results with closed-form
answers

Figure 9 shows a test example which has closed-form solutions
based on the slip-line field method (Sokolovski 1954). An in-
clined surface load is applied on a uniform, weightless slope
with parametersc = 750 kPa,φ = 35°, χ = 35°, andδ′ = 24°.
The closed-form solution givesq = 6228 kPa. In the numerical
approach, the slip surface is simulated by splines connecting
five nodal points. Using alternative 1, the value ofη calculated
by [39] for the initially estimated slip surface 1 was 0.07, and
the value ofFo was found to be 1.034 if alternative 3 was
subsequently employed. The results of 200 randomly gener-
ated slip surfaces suggested a slip surface 2 which gaveη =
0.034. Starting with this slip surface, the optimization process
gave the critical slip surface and interfaces shown as line 3 with
ηm= 0.0033 andFm= 1.007. The critical slip surface, inter-
faces, and minimum factor of safety obtained by the numerical
upper bound approach are close to those anticipated by theory.

Fig. 7. Simulation of a generalized slip surface. Slip surfaces: 1,
initial estimate; 2, critical.

Fig. 8.Closed-form solution: weightless slope with a vertical
surface load.
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Comparisons of the numerical results of EMU and other
programs

In 1989, a soil slope stability programs review project (Donald
and Giam 1989) was organized by the Australian Association
for Computer Aided Design (ACADS). A set of 10 standard
test problems was issued to users and some authors of various
slope stability programs, which included those developed by
several invited specialists whose work has been well docu-
mented (Baker 1980; Fredlund 1977; Chen and Shao 1988).
Donald and Giam (1989, 1992) gave a comprehensive review
which confirmed that, for all 10 problems, EMU gave results
equal to or very slightly higher than the “referee answers”
which were based on conventional limit equilibrium methods
and the answers given by the invited specialists.

Figure 10 gives another example which evaluates the land-
slide of the Tianshenqiao Hydro-power Project documented by
Chen and Shao (1988). The value ofFm obtained by EMU was
0.882 and that from the limit equilibrium method was 0.863.
Although the critical slip surfaces differ in shape, they both
suggest passing through the toe of the slope, a situation con-
sistent with what had been observed in the field.

Equivalence between the energy and force
equilibrium methods

It has been argued that the new method employs the associated
flow law, which might limit its applicability. This section dem-
onstrates that the new method is equivalent to the conventional
limit equilibrium method that employs nonvertical slices
(Sarma 1979) and does not introduce the associated flow law.

Figure 11 shows the forces applied on an inclined slice as
shown in Fig. 6. Sarma (1979) assumes that the normal and
shear forces on the base and the inclined interfaces all obey
the Mohr–Coulomb criterion. In Fig. 11,P′ is the resultant of
the normal effective forceN′ on the slip surface and the fric-
tional resistance generated byN′, which is tangent to the slip
surface with a magnitude ofN′ tanφe. P′ is therefore inclined
at an angle ofφe to the normal. A similar definition applies to
G′, which refers to the interface. By projecting all the forces
applied on the slice onto line AA′, which inclines at an angle
of φe to the slip surface, the equilibrium equation for a slice
can be formulated as

[47] −(∆Ty + ∆W)sin(α − φe) − (η′∆W + ∆Tx) cos(α − φe)

+ (ce∆x cosφe − u∆x sinφe)secα − ∆[G′ cos(ψ +− φe
j )

± ce
j L sinψ + ujL cosψ] − ∆Q = 0

The symbols± and+− refer to the two possibilities of movement
directions on the interface as discussed in the previous section.
The upper symbol, for example+ in ±, represents case 1, and
the lower symbol, –, represents case 2,

[48] ψ = α + δ − φe

and ∆Q refers to the disturbance factors and is determined by the
following equations. For alternative 1,

Fig. 9.Test problem for the closed-form solution shown in Fig. 8.
Slip surfaces and interfaces: 1, initial estimate (F = 1.034); 2,
random search result; 3, final solution (Fm= 1.007).

Fig. 10.Reevaluations of the Tianshenqiao landslide. Failure
surfaces: I, actual; II, that obtained by Spencer’s method (Fm=
0.863); III, that obtained by EMU (Fm= 0.882).

Fig. 11.Force equilibrium of an inclined slice as shown in Fig. 6.
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[49] ∆Q = ηt[∆Ty sin(α − φe) + ∆Tx cos(α − φe)]

and for alternative 2,

[50] ∆Q = ηb∆Wsin(α − φe)

Let ∆x −>0, and [47] becomes

[51]
dG′
dx

− tan(ψ +− φe
j )

dδ
dx

G′ = p(x)sec(ψ +− φe
j )

where

[52] p(x) = p1(x) + p2(x) + p3(x)

[53] p1(x) = −



dW
dx

+
dTx

dx



sin(α − φe) −




η′dW

dx
+

dTx

dx




× cos(α − φe) + (ce cosφe − u sinφe)secα

[54] p2(x) = +−
d
dx

(ce
j L sinψ ± ujL cosψ)

For alternative 1,

[55] p3(x) = −ηt




dTy

dx
sin(α − φe) +

dTx

dx
cos(α − φe)





and for alternative 2,

[56] p3(x) = −ηb
dW
dx

sin(α − φe)

Solving the differential equation with relevant boundary con-
ditions, solutions are obtained that are identical to [39] and
[41]. The derivations, which are lengthy and complex, can be
found in Chen and Donald (1993).

The derivations demonstrate the following enlightening
points:
(1) Once a multiblock failure mode is established, the problem

becomes statically determinate, and the answer is therefore
unique, irrespective of the methods used to find it.

(2) The energy approach employs the associated flow law as
a working assumption to facilitate the solutions by [3]. The
solutions have been mathematically demonstrated to be
identical to those obtained by the force equilibrium ap-
proaches in which the associated law is not employed, but
are obtained in a conceptually very simple way by estab-
lishing a work and energy balance equation.

(3) Although both methods succeeded in finding the solution,
the mathematics involved in the force equilibrium ap-
proach is complex and in fact would not have become
available if the derivations were not directed by the known
answers of [39] or [41]. This fact is even more significant
if three-dimensional slope stability is concerned.

Conclusions

The new method proposed in this paper features the following:
(1) It approaches the solution by establishing a compatible

velocity field and using the upper bound theorem of plasticity.
Compared to the conventional methods that employ force
equilibrium conditions (Sarma 1979), this method is more eas-
ily formulated, since it includes only a scalar manipulation
such as [1], [3], or [8] and presents more rational solutions by
considering two possibilities of relative movement between
slices.

(2) It employs the method of optimization to approach the

least upper bound, which has enabled much wider applications
to practical problems that might involve complicated slope
contours and material heterogeneities.

(3) The new method is supported by a sound theoretical
background. A number of test examples show that it can give
results as accurate as closed-form solutions.

(4) The requirement for kinematic admissibility included in
the new method allows more rational approaches for practical
problems.

The limitations of this method include a possible overestimate
of factor of safety if the optimization routines fail to find the real
or global minimum. The authors’ experience indicated that the
random-search technique (Chen 1992b) was very useful for
facilitating successful searches. Coupling the new approach
with conventional methods such as the Morgenstern–Price
method, which virtually implies a lower bound solution, will
on most occasions give accurate solutions, since the gaps be-
tween the upper and lower bounds are generally very small, as
shown in the examples in this paper.

The potential for extending the method to other areas of
geomechanics is highly promising.
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