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Slope stability analysis by the upper bound
approach: fundamentals and methods

lan B. Donald and Zuyu Chen

Abstract: A new method for stability analysis in soils and rocks is presented, based on the upper bound theorem of classical
plasticity. The sliding mass is divided into a small number of discrete blocks, with linear interfaces between blocks and either
linear or curved bases to individual blocks. By equating the work done by external loads and body forces to the energy
dissipated in shearing, either a safety factor or a disturbance factor may be calculated. The rigorous theoretical background is
established, from which it may be demonstrated that for several well-defined classical slope problems the equations for the
multi-block solution reduce to the published closed-form solutions. Powerful optimization routines are provided in the
computer program EMU to search for the critical failure mechanism giving the lowest factor of safety. Several examples are
given to demonstrate that, for problems where the exact answers are known, the new method produces accurate values of
safety factor and predictions of failure mechanism. Applications to practical problems have shown that the new method is as
simple as the conventional limit equilibrium methods for practitioners.

Key words:slope stability, upper bound theorem, energy method, factor of safety, methods of optimization.

Résumé: L'on présente une nouvelle méthode d’analyse de stabilité dans les sols et les roches basée sur le théoreme de la
limite supérieure de la plasticité classique. La masse glissante est divisée en un petit nombre de blocs discrets avec des
interfaces linéaires entre les blocs et des bases linéaires ou courbes pour les blocs individuels. En mettant en équation le travail
fait par les charges extérieures et par les forces du poids propre avec I'énergie dissipée durant le cisaillement, un coefficient de
sécurité ou un facteur de perturbation peuvent étre calculés. L'on établit la base théorique rigoureuse est a partir de laquelle il

peut étre démontré que, pour plusieurs problemes de pente classiques bien définis, les équations pour la solution de blocs
multiples se réduit aux solutions exactes publiées. L'on fournit des routines efficaces d’optimisation dans le programme
d’ordinateur, EMU, pour la recherche du mécanisme de rupture critique donnant le coefficient de sécurité le plus faible. L'on

donne plusieurs exemples qui démontrent que, pour les problémes pour lesquels les réponses exactes sont connues, la nouvelle
méthode fournit des valeurs du coefficient de sécurité et des prédictions du mécanisme de rupture précises. Des applications a

des problemes pratiques ont montré que la nouvelle méthode est aussi simple pour les praticiens que les métohodes
conventionnelles d’équilibre limite.

Mots clés: stabilité des pentes, théoreme de limite supérieure, méthode d’énergie, coefficient de sécurité, méthodes
d’optimisation.
[Traduit par la rédaction]

Introduction 1988; etc.). However, there is no theoretical reason which ade-
0 | decad he limi ibri hod h | quately explains the success of its extensive applications.
ver several decades, the limit equilibrium method has almost ™ 5 the other hand, the potential of extending the plasticity

dominated the profession for examining the stability of slopes, \,a1hd to soil and rock stability analysis has been investigated
embankments, and other soil and rock structures. The methodby many researchers. Early efforts were made by Frontard

originating from a basically empirical background (Fellenius (1922) and Jak :

4 y (1936), but neither of these methods was
1936), has zegn_ greig)éSImpSroved byl\;a6n7bu 8(1973)’ l'\g(;g based on realistic failure surfaces or numerically tractable
genstern and Price (1965), Spencer (1967), Sarma (1973)p6thods. Sokolovski (1954), Fang and Hirst (1970), Booker

Fredlund and Krahn (1977), Chen and Morgenstern (1983), oq pavis (1972), and Graham (1973) employed plasticity the-
and other researchers to satisfy the complete requirements f%ry, mainly based on the slip-line fields method, and limited

force a}nd moment equilibrium and to accommoda_lte general-their studies to problems with simple geometries. Later work,
ized slip surfaces. Recent updating of the method includes themainly concerned with the upper bound analysis, was con-
automatic searching for the minimum factor of safety and its 4, by Finn (1967), Chen and Snitbahn (19’75) Karal
e_lssociated_critical slip surface using the methods of optimiza- (1977, 197h), Chen aﬁd Chan (1984), and Izbicki (i981).
tion (Celestino and Duncan 1981; Nguyen 1985; Chen and Shadgiensjons of the upper bound solutions to nonlinear failure
envelopes have been investigated by Baker and Frydman
(1983), Zhang and Chen (1987), Drescher and Christopoulos

Received August 20, 1996. Accepted July 5, 1997. (1988), and Collins et al. (1988). Gussmann (1982) presented
1.B. Donald. Department of Civil Engineering, Monash t_hg kinematical element method, which (_jivid_es a so_il mass into
University, Clayton VIC 3168, Australia. finite elements and calculates the velocity distribution and en-
Z. Chen. China Institute of Water Resources and ergy dissipations of these elements. Sloan (1988, 1989) used

Hydropower Research, P.O. Box 366, Beijing 100044, China.  finite elements and linear programming to perform both lower
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Fig. 1. Failure mechanism of the upper bound approach. The real ~ work has been further updated by the authors of this paper with

failure mechanism is the shaded area. a multiblock failure mechanism which provides a fully ana-
_ ot lytical formulation of upper bound solutions capable of pro-
Plastic ' ducing a series of closed-form solutions originally offered by

Sokolovski (1954). Extensions to bearing capacity and three-
dimensional slope stability analysis problems (Chen 1995)
have shown the great potential of the new method in providing
innovative tools to other areas where simple and complete nu-
merical methods are still not available. Although the research
findings have been presented in several papers (Giam and
Donald 1991; Donald and Chen 1995; Chen 1995), this paper
for the first time completely covers the theoretical background,
numerical techniques, validations, and extensions of this new
upper bound slope stability analysis method.

bound and upper bound analysis. His work represents an at-

tempt to obtain “bound solutions” by numerical methods on a Review of the numerical approach to the
theoretically rigorous foundation. Similar approaches were  ypper bound method

presented by Chuang (1992.992), who employed a pair of
primal—dual linear programs that encoded kinematic and static
requirements, respectively, in a finite element discrete version.
Rotational displacements were included in his work.

Despite the great volume of research work, reports of its
practical applications appear to be rare. It is not difficult to
understand that the limit analysis method could not be used
extensively in the profession unless the following problems

Elastic
zone

The upper bound theorem

The extensions of the upper bound theorem in plasticity to
solving geotechnical problems have been explored by Chen
(1975). When applying the upper bound theory to slope stabil-
ity problems, it is assumed that during failure, a slip surface
I" divides the slope into a plastic failure zone, in which the
stress state at any point is either on or inside the yield surface,

have been properly solved. and an elastic zone, in which the dis int i
; - , placement at any point is
(1) Numerical tractability—Baker and Frydman (1983) and virtually negligible. Shear failure exclusively dominates along

Zhang and Chen (1987), among others, employed calculus ofthe slip surface and within the plastic zone (Fig. 1).

variations to find the least upper bound and consequently lim- The statement of the upper bound theorem, particularly

ited themselves to only a few demonsrative examples that had, , , .o e with slope stability analysis, can then be described
simple slope geometries and material properties. As the ma

> . ; ."“"as follows. Assign a kinematically admissible strain increment
jority of practical problems are non-analytic, some numerical

. '“D . . D . ok
techniques must be employed to accommodate the varied gefleld & In the plastic zond2,, and the velocity/" along the

! . slip surfacd™™, then the external surface load calculated by
ometry and heterogeneity commonly encountered in geotech-the e :
; . o quation
nical problems. It has been found, in the area of limit
equilibrium methods, that the techniques of optimization have 1) I o eldQ +I dD7= W\ + TV
been successfully used to minimize the factor of safety. Their o r
extensions to limit analysis methods certainly deserve investi-
gation.

(2) Rational failure mechanismPartly because of the nu-
merical difficulties mentioned previously, most researchers
employed logarithm spirals as failure surfaces and assumed th
sliding mass to be arigid body within which the internal energy
dissipations are totally ignored (Baker and Frydman 1983;
Zhang and Chen 1987). Karal (19 7197h) has correctly
pointed out that the sliding mass is generally formed by a
“composed mode” which includes both rigid and “soft” parts.
Within the latter, energy dissipation cannot be ignored. It is
suspected that these simplifications would be too great to pro-
duce sufficiently accurate solutions.

(3) Demonstrations of feasibility and validityThe limit
analysis method will not prove to be competitive with the limit
equilibrium method until sufficient evidence has been gained
to demonstrate its validity. Comparing the results with well-
known closed-form solutions is a means commonly employed [2] dD =1V, +0,V,

(Chen 1975; Finn 1967). During the past decade, the first )

author and P. Giam worked intensively on a theoretically rig- =(cos@ I +sing o)V
orous and numerically efficient upper bound limit analysis
method (Giam and Donald 1991). A multiwedge failure
mechanism was developed to include the energy dissipationswherec andg are shear strength parametéfsandV,, are com-
both on the slip surface and within the sliding body. The early ponents o in tangential and normal directions, respectively;

will be either greater than or equal to the real surface [bad
which is associated with a real failure mechanism represented
by the plastic zon€ and the slip surfacg, wherecrijD is the
stress in the plastic zone that produeﬁ&according to the
Ehormality flow rule, Dy is the energy dissipation on the slip
surface,W is the weight of the sliding mass, andis the
velocity at the points at whict andT apply.

The slope failure mechanism considered herewith generally
offers a continuous stress as well as a velocity field except
along the slip surface where the plastic veloditychanges
abruptly to zero at the elastic zone through an infinitesimally
thin shear band (Fig. 2). Based on the associated flow law and
Mohr—Coulomb failure criterion, it can be shown (Chen 1975;
Giam and Donald 1991) that the velocity at the shear band
inclines at an angle to the band and the energy dissipation
along this slip surface per unit area is (Fig. 2)

=(ccos@-usingV
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Fig. 2. Energy dissipation on a shear band. Fig. 3. A three-wedge failure mechanism.
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u is the pore pressure applied on the shear bap@ndt are T

the normal and shear stress on the shear band, respectivelyrhis alternative, defined as alternative 1, can be conveniently
Equation [2] indicates that the energy dissipation based on theysed in bearing capacity problems.
Mohr—Coulomb criterion can be conveniently calculated with- (2) The failure mechanism is brought about by a pseudo-
out the knowledge of the stresses on the shear zone. This hagorizontal body force whose magnitude is determined by
contributed significantly to the success of the approach de-n, W, whereWis the self-weight of the plastic zone. The value
scribed herein. of n, that brings the failure is called the “coefficient of critical
The procedure of solving structural problems includes as- acceleration” (Sarma 1973). This alternative, defined as alterna-
suming a series of compatible displacement patterns and cal+tive 2, is preferred in slope stability analysis, since surface loads
culating their respective load” based on [1]. The one in many cases do not exist. Equation [3] can be replaced by
associated with the minimu®" will most likely be the true

-1
load that brings the structure into failure. The concept is re- 0 s O 0
ferred to as the least upper bound approach. [5] ) Dk+ ) ADg=WV+ ToVE+ n, WY
k=1 k=1
The approximated failure mechanisms: multiwedge whereW is a force in the negative axis direction with a
systems magnitude of\.

For a slope concerned, the plastic zone is divided into a number . (3) The failure mechanism is created by decreasing the
of wedges which are created by inclined straight-line inter- shear strength parameters by a coefficient called factor of

faces and bases. Figure 3 shows a three-wedge system. Eaciffety.F, which provides a new cohesiggand friction angle
wedge moves with a velocity that inclines at an angle to ¢ by the definitions

the slip surface, creating a relative velociyto its neighbour- _C
ing wedges along the interfaces. The wedge itself moves as a[G] C=F
whole. No energy dissipation will develop within the wedge

body. For a system containingwedges anah — 1 interfaces, [7] tang.=
[1] is then replaced by its approximation F

Also based on [1]F can be obtained by solving the following

tang

n-1 n . . A .
_ equation using iterations:
S — (|
[3] ZDL+ZA P =WV + T o )
k=l k=1 LIS Dl + 5 ADg = WV + ToVP
where the first and second terms refer to the energy dissipa- ot o

tions developed on the interfaces and slip surface, respectively

both calculated based on [2]. The subscript e indicates that the corresponding terms are cal-

culated based ow, and @,, which involve the unknowrt.
Since [8] is nonlineari- will be obtained by trial and error or
The disturbance that brings about the failure mechanism by the Newton—Raphson method. Sarma (1973) suggested an
Most structural problems are concerned with the system that isiteration method based on the critical acceleration concept.
not at failure and the question needing to be answered is how To facilitate presentation, the symbajsand, are invari-
large an external disturbance need be to bring this system fromably used for all three alternatives in the remaining part of the
a safe state to a state in which the failure mechanism appearspaper. This means that a factor of safety of unity is actually
In slope stability analysis there are several alternatives for de-implied when alternatives 1 or 2 are concerned.
fining the external disturbance.
(1) Ifthere is a load® applying on the surface, thenitcan Calculation of the compatible velocity field
be increased td at which failure happens. The disturbance Let us observe the two adjoining wedges as shown in Fig. 4.
factorn is then defined as The left and right wedges move with the absolute velochies
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Fig. 4. Velocity compatibility between adjacent blocks. The left
wedge moves upwarda) Velocities of the blocks.H) Velocity
hodograph.

Can. Geotech. J. Vol. 34, 1997

Fig. 5. Velocity compatibility between adjacent blocks. The left
wedge moves downwarda) Velocities of the blocks.k) Velocity
hodograph.

andV, which incline at angleg,, andq,, to their bases, 08,
and@,, to thex axis, respectively. The relative velocity of the

the first interface to th&th one that separates thh and k +

left wedge with respect to the right one along the interface is Dth wedges.

represented a¥;, which inclines at an angle,; or (- @),

It has been noted that the left wedge can move either up-

depending on whether the left wedge moves upward or down-ward or downward with respectto the right wedge. The former
ward with respect to the right one, an important consideration case (refer to Fig. 4), defined as case 1, is most usually encoun-

that will be discussed subsequently.
To allow the velocities assigned to thewedge failure

tered. However, iV, lies overV,, and consequentl§, < 6, as
illustrated in Fig. 5, the left wedge will move downward in-

mechanism to be kinematically compatible, the two adjoining Stead of upward with respect to the right wedge. This situation,
wedges must not move to cause overlap or indentation. Thisdefined as case 2, occurs, for example, where the base of the

implies that the velocity hodograph must be closed, i.e.,

[9]

Solving [9], we obtain

Vr+Vj:V|

[10] V.=V, sin®, ~6)
"~ "sing, - 0)

_,, Sin®,-8)

(L1 V=V sin(®, - 6))

whereg;, 6,, and6, are measured from the positixexis in a
counterclockwise direction, i.e.,00 < 11, andd is the inclina-
tion of the interface measured from the positivaxis to the
positivex axis. Starting from the first interface, the velocity of
any wedge at the right side of tlkéh interface, represented as
V, can be expressed in terms 6f, the velocity of the first
wedge by successive calculations based on the equation

[12] V=KV,
where
K .
_ Y sintel- s -6)
131 <=1 e gt - 0)

i=1

wherea is the inclination of the base to the horizontal, and the

superscripts | and r refer to the values at the left and right sides

of the interfaces, respectively. The multiplication starts from

left wedge is a weak band that offers a low friction angle and
produces abrupt change énalong the slip surface. The rela-
tive velocity in this case would incline at an angle of<{,)
rather thany, to the interface.

In general, we define

[14] 6 =T+~ @y

[15] er:TH'ar_(per

and
T

[16] 6= 5 o+, forcasel
_ 3 f

[17] 6= > d- @, forcase2

It is worth noting that this argument applies to all methods
that employ nonvertical slices, such as those proposed by
Sarma (1979) or Kovari and Fritze (1984). If the direction of
possible movement between two slices is not properly consid-
ered, these methods will also give incorrect answers on some
occasions, particularly where the base failure surface contains
sections of reverse curvature.

Conditions of kinematic admissibility
Determining the velocity field by [10] and [11] is subject to the
conditions of kinematic admissibility which state as follows:

[18]
[19]

6,>6,>6,-m forcasel

6, <8 <6 +m forcase?2

© 1997 NRC Canada
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Fig. 6. The multiblock failure mechanism.

soil layers

weak seam

X X+dX Xp41 Xn X

Satisfaction of these conditions implies that the value¥,of

andV, calculated by [10] and [11] must be positiveVif is
positive.

In summary, we present the following kinematic conditions
for the multiwedge failure mechanism. The formal demonstra-

tion is given elsewhere (Donald and Chen 1992).
Case 1the left wedge moves upward, i.6,> 6,, and it is
required thag; take the definition of [16] and

[20] 6,-6,>0

Case 2 the left wedge moves downward, i.6,< 6;, and
it is required that; take the definition of [17] and

[21] 6,-6<0
and
[22] &—Q>—n

The energy method formulated in terms of continuous
media

857

_ Sinak-di - 6)
261 V=W it~ g 0)

g x d O
x exg]-J' cofo — @, — Gj)é e
O % O

Since
da 0O
_dED

0 %
[27] Vi=Viexp D’I cot(a - ¢, — 6)
0 % € 5

1

we have the following equation calculating the velocity field

for the multiblock failure mechanism:

28] Vo, SOk th=6)

sin(a — @ — 6)

0 da 0O

x exqj-j cofa — @, — GJ)E dé

O % O

k

_ sin(a} - ¢ - 6))
Vo[ lsinai =g, - o)

O -* d O
x exg]-_[ cofa — @, — Gj)é &
O % O

0 da O
=KV, exqj-j cotla — @, — ej)d— e
O * 3 a

=EX)V,

where

O do O
[29] E(X) =k exp EFI cota - @~ 8)—dé
a % dé a

If a part of the slip surface has a smoothly curved shape with Equation [28] indicates that the velocity at any point of the slip

uniform shear strength parameters, i@.is constant and is

continuous in an intervak(, x.,,) (refer to Fig. 6), the velocity

surface, located right of thih discontinuity ofg, or a, can be
calculated by direct integration within the intervad,,(x),

at any point can be calculated by integration rather than suc-based oV, the velocity at the left end of the slip surface. The

cessive multiplications.

effect of possible discontinuities ip, and a has been ac-

Suppose the velocity at point A (refer to Fig. 6), with its counted for by the coefficient.

abscissa valug, is V, which has an incrementVdwhen A
moves to B, which has the abscissa vablue ¢Ix). Substituting
VandV + dV for V, andV,, respectively, in [10], we have

sin(a — @, — 6))
sin(a +da - @, - §)

[23] V+dV=V

Neglecting magnitudes with the orders higher than de
have

dv _ o ada
[24] —v—col(or ®.—6) I dx

Integration of [24] yields
O da O
[25] V=V exp EFI cot(a - @, - 6)—— d&
0° % & g

whereVj is the velocity at the right side of thh interface,
and¢ is a dummy variable substituting far By virtue of [10],
[25] can be written as

Neglecting high-order terms, [11] can also be reduced to
[30] V,;=-Vcosef - @, - 6)da
=-V, cosef - ¢, - 6))E(x)da

Equation [30] is applicable only whep, is constant and is
continuous. It indicates that within the interval,(X,), V; is
an infinitesimally small magnitude with the order af.df the
slip surface is a straight line, i.e.aftx = 0, V; will be zero.
This means that the energy dissipation within a wedge body is
zero if @, is uniform along the base of the wedge.

With the approaches described herein, we are able to define
a multiblock failure mechanism (refer to Fig. 6). The plastic
zone of the slope is divided by a number of blocks that have
curved bases with constagi Each block will be further di-
vided into a number of slices, or wedges, whose interfaces
incline at angles ob from the vertical, which are determined
by linear interpolation based on the corresponding values at
the left and right interfaces of the block. The velocities along
the slip surface and the interfaces can be readily determined

© 1997 NRC Canada
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by [28] and [30], except at the point of discontinuities where
V; is determined by [11].

Calculations of the work and energy dissipations
With the velocity field obtained for a specified failure mecha-

Can. Geotech. J. Vol. 34, 1997

Internal energy dissipations
The internal energy dissipations are contributed by two parts:
(i) the energy dissipation along the base of a slice

[33] dDs=(c,cos@p,—using)seca E(x)dx

nism, the work done by the external loads and the internal and i) the energy dissipation along the interface between two
energy dissipations of a block can be calculated by integrationadjoining slices at the point of discontinuity and within the

or summations.

Considering a slice in a block with a base widtk dnd
takingV, =1, the various terms of work and energy dissipation
for this slice can be determined as follows.

Work done by the body forces

The body forces applying on a slice includedelf weight dV,

(i) pseudo-seismic forcg' dw, and (i) pseudo-disturbance
force n, dW that brings about the failure mechanism. Work
done by these body forces is

[31]  d(WV) =dWsin(a = @) + (0" + np)coga ~ g)1EX)

Work done by the surface loads

Surface loads should be transferred to the base of the slice

where integration is made and are representedipyadd dr,,

blocks, which are calculated separately.

If an interface is located at a point of the slip surface where
a is continuous and, is constant, the energy dissipation due
to an increment it between the two slices can be calculated
based on [30] as

[34] dD! =—(c,cos@, - U singL)L cosefa — @, — 8)E(x)da

whereL is the length of the interface.

If an interface is located at the point of the slip surface
wherea or @, changes abruptly, the energy dissipation at this
particularkth interface is calculated based on [11] as

[35] ADJ] =—(c,cosq, - U sing), Ly
x cosefa’ — g, - 6), sin(Aa — Agy), E'(x)
whereAa andAg, are the increments ia and@ from the left

respectively. For the case of disturbance alternative 1, anotherside to the right side of the interface, respectively, and the
n.dT,andn,dT, are added. The work done by the surface loads superscript | represents the corresponding values at the left side

and the pseuJo-disturbance force is
[32] d(TV9)
= [(1+nydTy sinfa = @) + (1 +nydT, coga — @)]E(X)

The positive directions of the external forces that do work are

defined to be opposite to the coordinate axis.

of the interface.

Formulations for the upper bound approach

Substituting [31]-[35] into [3], [5], and [8], we obtain the for-
mulas to calculate the disturbance factors for various alterna-
tives with the following definitions:

dw dT.

% . gw | dT,0 . 0 0
[36] G :I %ce COSQ, — Using)seca — G-+ E(ZDS'F(G —Q)-m g d—XXDcos{a - (pQ%(x)dx
x, O a 0 0 a

n-1

X ) ) )
[ (c.cosg. - u'sing) L cose¢a — ¢, - Gj)z—?( E(x)dx —
%o k=1

[37] Gy=[ X“%ixv coga — g)E(X)dx

]

X[, dT.
[38] Gr= J’ E—TIQ sin(a — @) + — coga — (pQEE(x)dx
« X dx 0

0

For alternative 1, the disturbance coefficient of the propor-

tional pseudo-surface load is
_ _G

[39] rl - rlt - GT

For alternative 2, the coefficient for the critical acceleration is
___G

[40] r] - nb - Gb

Note again that for alternatives 1 and 2 the symiopksnd,

involved in these equations represent the actual vatuesd
@, implying thatF = 1.

Z(de cos@, - U sin @), Ly cosega’ — ¢, — 8)), sin(Aa — Ay, E'(x)

For alternative 3, the factor of safety is calculated by solv-
ing the equation
[41] G=0

in which F is involved inc, and@.. Iterations are necessary to
find F.

Numerical techniques for finding the least
upper bound

The method of optimization

To determine the critical failure mode that gives the minimum
factor of safety, various methods of optimization have been
employed. A slip surface is divided by a number of nodal points
Ay, As,..., Ay (Fig. 7) with coordinates given by €1, 2,....m):

[42] zizgjﬁ
'a
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Fig. 7. Simulation of a generalized slip surface. Slip surfaces: 1, Fig. 8. Closed-form solution: weightless slope with a vertical
initial estimate; 2, critical. surface load.
y y

™

Weak seam

>

Each pair of contiguous nodal points is connected by a straight
line or a smooth curve. The smooth curve is generated by
spline functions and is generally preferred unless a weak band. %
such as the part M5 in Fig. 7, is simulated. At each nodal
point, an interface is assigned with its inclination designated as
0. The value of factor of safetly, or the disturbance factar,
can then be determined by solving either [39], [40], or [41].
During the integrations, each block is further divided into a
number of slices to accommodate possible changes in geome
try and shear strength parameters. _ 1 +sing O
F andn are then expressed as functions with respegi,to [45] q=ccote h_ Sing exd (- 2x) tang] — 10
Yir X95 Yo, s Xy Yirw 01, Oy, Oy fOr mnodal points: O

vertical surface load, but the unit weight of the material is
zero. Based upon the slip-line fields method and the Sok-
olovski (1954) basic equations, it is possible to find the closed-
form solution to the limit load:

wherey is the inclination of the slope from the horizontal. The

[43] F=F(ZY9) critical slip surface consists of three lines. The straight lines
= F (Xy, Vo, Xou Yoo X Vo Be) 1B, AB and CD incline at an angle @fto the slope surface and the
O V1. %21 Yo mw Ym O1: O2 m vertical, respectively, whene is defined as
[44] n=n(Z79) g
- [46] p=—-=
_r] (X]_y y]_! X21 y2!---1xrna ym! 611 62!---16[]1) 4 2

The task of evaluating the stability of a slope becomes a BC is a log-spiral line with its left and right interfaces BO and

numerical problem of finding a set of variablgsandd that COinclined at the anglg to the slope surface and the vertical,
gives the minimumF or n with the associated slip surface respectively.
connected by the nodal points,B,,..., B,. The technique of Itis possible to demonstrate that for this particular problem,

finding the minimum factor of safety is similar to that in con-  with the known slip-lines, [45] is identical to [39]. For details,
ventional methods as discussed by a number of authors (Bakerefer to Donald and Chen (1992).
1980; Celestino and Duncan 1981; Nguyen 1985; Li and White
1987; Sun 1984; Chen and Shao 1988). Comparisons of the numerical results with closed-form
Chen (1993, 1992) has discussed the difficulties in find- answers
ing the global minimum factor of safety. A method called ran- Figure 9 shows a test example which has closed-form solutions
dom search has been proposed and proved to be helpful irbased on the slip-line field method (Sokolovski 1954). An in-
approaching the critical failure mechanism. clined surface load is applied on a uniform, weightless slope
A computer program EMU (Energy Method Upper-bound) with parameterg = 750 kPap= 35°, x = 35°, andd' = 24°.
has been coded to perform various practical stability analysis The closed-form solution gives= 6228 kPa. In the numerical
problems, including the ship lock slope of the Three Gorges approach, the slip surface is simulated by splines connecting

Project in China, with satisfactory results. five nodal points. Using alternative 1, the valuenafalculated

by [39] for the initially estimated slip surface 1 was 0.07, and
Validations of the numerical method the value ofF, was found to be 1.034 if alternative 3 was
The validity and feasibility of the new method have been as- subsequently employed. The results of 200 randomly gener-
sessed by different approaches as described herewith. ated slip surfaces suggested a slip surface 2 which gave

0.034. Starting with this slip surface, the optimization process
Comparison of the governing equation (eq. [39]) with the gave the critical slip surface and interfaces shown as line 3 with
closed-form solution Nm= 0.0033 andrF,,= 1.007. The critical slip surface, inter-
Figure 8 shows a slope composed of uniform material with faces, and minimum factor of safety obtained by the numerical
cohesionc and friction angleg. It is subjected to a uniform  upper bound approach are close to those anticipated by theory.
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Fig. 9. Test problem for the closed-form solution shown in Fig. 8. Fig. 11.Force equilibrium of an inclined slice as shown in Fig. 6.
Slip surfaces and interfaces: 1, initial estimdte=(1.034); 2,
random search result; 3, final solutidf,(= 1.007).

0 5 10(m)
T 1

q = 6228 kPa

Fig. 10.Reevaluations of the Tianshengiao landslide. Failure
surfaces: |, actual; II, that obtained by Spencer’s metirqg=(
0.863); Ill, that obtained by EMUH,,= 0.882).

Equivalence between the energy and force
equilibrium methods

It has been argued that the new method employs the associated
flow law, which might limit its applicability. This section dem-
onstrates that the new method is equivalent to the conventional
limit equilibrium method that employs nonvertical slices
(Sarma 1979) and does not introduce the associated flow law.
Figure 11 shows the forces applied on an inclined slice as
shown in Fig. 6. Sarma (1979) assumes that the normal and
shear forces on the base and the inclined interfaces all obey
the Mohr—Coulomb criterion. In Fig. 1P is the resultant of
the normal effective forc&l' on the slip surface and the fric-

Comparisons of the numerical results of EMU and other tional resistance generated B which is tangent to the slip
programs surface with a magnitude & tan@,. P’ is therefore inclined

. . . . at an angle ofp, to the normal. A similar definition applies to
In 1989, a soil slope stability programs review project (Donald ~, . e ) L
and Giam 1989) was organized by the Australian Association = Yyhc'fh re;‘]ers lFo the mtlt_erfaZ'eA.\ Bﬁ( r;qujecl;tlng all the forlces
for Computer Aided Design (ACADS). A set of 10 standard afpp 1 ohnt FS |cef0nto ;]ne ’\.’:’.b'(.: Inclines at a]}n angl?
test problems was issued to users and some authors of variougar(]pebg)fgr?nzlg’tsgrazce’ the equilibrium equation for a slice
slope stability programs, which included those developed by

several invited specialists whose work has been well docu-[47] —(AT, + AW)sin(a - @) — (N'/AW + AT,) coga - ¢,
mented (Baker 1980; Fredlund 1977; Chen and Shao 1988). Y ) ) )

Donald and Giam (1989, 1992) gave a comprehensive review _ ; Al T a
which confirmed that, for all 10 problems, EMU gave results + (Cehx cosq, — uhx singseca ~ A[G' cody ¥ ¢)
equal to or very slightly higher than the “referee answers” +clL siny + UL cosy] -AQ =0
which were based on conventional limit equilibrium methods ¢

and the answers given by the invited specialists. The symbols and¥ refer to the two possibilities of movement

Figure 10 gives another example which evaluates the land-directions on the interface as discussed in the previous section.
slide of the Tianshengiao Hydro-power Project documented by The upper symbol, for examptein +, represents case 1, and
Chen and Shao (1988). The valuefgfobtained by EMU was  the lower symbol, —, represents case 2,

0.882 and that from the limit equilibrium method was 0.863. [48] W=a+5-

Although the critical slip surfaces differ in shape, they both e
suggest passing through the toe of the slope, a situation con-and AQ refers to the disturbance factors and is determined by the
sistent with what had been observed in the field. following equations. For alternative 1,
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[49] AQ=nJAT,sin(a - @) + AT, coga - @] least upper bound, which has enabled much wider applications
. to practical problems that might involve complicated slope
and for alternative 2, contours and material heterogeneities.
[50] AQ=nAWSsina - @) (3) The new method is supported by a sound theoretical
background. A number of test examples show that it can give
LetAx >0, and [47] becomes results as accurate as closed-form solutions.
daG’ _..dd . (4) The requirement for kinematic admissibility included in
[51] 5 ~tabF @) G =p()secy * ¢) the new method allows more rational approaches for practical
problems.
where The limitations of this method include a possible overestimate
[52] p(X) = py(X) + po(X) + ps(X) of factor of ;a_fety if the optimizatif)n rout_ines fail to find the real
aw  dT 0w, dT,0 random-36arch teshnique (Chen 189as very uselul or
XLJ - , X -
(53] P.) E'd_+ dx %m(a %) %] dx " dx% facilitating successful searches. Coupling the new approach

with conventional methods such as the Morgenstern—Price
method, which virtually implies a lower bound solution, will
on most occasions give accurate solutions, since the gaps be-
tween the upper and lower bounds are generally very small, as
shown in the examples in this paper.

The potential for extending the method to other areas of
geomechanics is highly promising.

x cogd — @) + (C, cosP, — u sin@yseca
[54] p,(x) = li(cieL siny + UL cosy)
For alternative 1,

T, dT, 0
[55] ps(¥) = NG sin(a — @) + e coga — @)
Oox X 0
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