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Abstract

It has been found that the limit equilibrium approach commonly used for tetrahedral rock wedge stability analysis is statically

indeterminate and the conventional method proposed in textbooks actually involves an assumption that the shear forces applied on

the failure planes are parallel to the line of intersection. A new method that allows an input of various shear force directions is

presented in this paper. This method starts from an assumed wedge displacement vector that can be related to the shear force

directions. By applying the limit equilibrium conditions a governing equation calculating the factor of safety has been obtained. This

equation also permits a formal demonstration to confirm that a maximum factor of safety exists when the rock wedge dilates at

values of friction angles to the left and right failure planes respectively, the direction required Mohr–Coulomb’s associative flow law.

The generalized method therefore provides a theoretical support to some fundamental postulates in Plasticity. The factors of safety

obtained by the conventional method and the generalized approach are not substantially different if the shear strength of the failure

planes involves a reasonable value of cohesion. However the deviations between the two approaches can be remarkable if the

material is purely frictional. Further study by physical model testing and field investigation is recommended.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Wedge failure is common in rock slopes. The simplest
and most frequently encountered failure mode involves
a tetrahedral unstable rock mass that slips along two
weak planes as shown in Fig. 1. In general, a tetrahedral
wedge failure is prone to occur if the line of intersection
of the two planes daylights at the slope surface.
The limit equilibrium method is commonly used to

find the factor of safety for this kind of failure mode.
The procedures are well documented in the literature
[1–3].
However, a detailed study of these procedures will

realize that the problem is statically indeterminate. In
the established force equilibrium equations, there are
generally two unknown internal force vectors applied on
the two failure surfaces, which involve a total of six
components in the x; y; z co-ordinate system (Fig. 1).
The factor of safety to be evaluated adds one more. The
number of available force equilibrium equations for the
wedge block, normally expressed by the projection of
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forces on the co-ordinate axes, is three. Another two
available equations can be provided by Mohr–Coulomb
failure criterion that relates the magnitude of the normal
and shear forces on the failure surfaces. Therefore, two
assumptions must be made to allow the problem to be
statically determinate. The traditional method presented
in textbooks actually assumes that the shear forces on
the failure surfaces are parallel to the line of intersection
of the two failure surfaces.
Perhaps, Pan [4] was the first one who argued the

theoretical background of the conventional method. He
believed that when a landslide is imminent, the internal
forces would be reorganized to mobilize maximum
resistance against failure. Based on this understanding,
Pan put forward his ‘principle of minimum and
maximum’ as follows:

* Among many possible slip surfaces, the real one
offers the minimum resistance against failure (prin-
ciple of minimum).

* For a specified slip surface, the stress in the failure
mass as well on the slip surface will be reorganized to
develop the maximum resistance against failure
(principle of maximum).
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Fig. 1. The rock wedge failure. Legend for the vectors: m is the direction of the wedge movement, N l; N r the normal of the failure planes, T l; Tr the

shear forces on the failure planes,W the external force, ZW 0 the disturbance force that brings about the failure. The subscripts ‘l’ and ‘r’ stand for the

left and right planes, respectively.

Table 1

Parameters for an example of symmetric wedge

Surface Dip direction Dip angle Friction angle Cohesion

Left 120� 67:2� 27:5� 0

Right 240� 67:2� 27:5� 0

Crest 180� 0�

Slope 180� 90�

Note: Height ¼ 100 m; Unit weight ¼ 2:7� 9:8 kN=m3:
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Fig. 2. Relationships between the factor of safety F and the shear

force inclination g for the example described in Table 1.
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Chen [5] indicated that Pan’s Principle could actually
be derived from the Upper and Lower Bound Theorems
of Plasticity.
To understand the impact of this argument, let us

examine an example that has a symmetric geometry and
material properties with respect to the line of intersec-
tion, as shown in Table 1 [6]. The cohesion of the two
failure surfaces is set to zero. The angle between the line
of intersection and the shear force applied on the failure
surface is denoted by g: For this symmetric wedge with
simple geometry, it is possible to establish a formulation
to calculate F associated with different values of g: The
case g ¼ 0� corresponds to the conventional method and
gives a value of factor of safety F ¼ 0:727: However F

increases as g becomes larger and eventually reaches a
maximum of 1.002 at g ¼ 42:5� (Fig. 2).
A further study was carried out by the method using

the Upper Bound Theorem of Plasticity [6] (refer to the
appendix). By assigning a plastic wedge displacement
that inclines at an angle of r ¼ 27:5�; being equal to the
friction angle f for both the left and right failure planes,
the work-energy balance equation gave an F that was
exactly the maximum of 1.002. Also it was found that
‘r ¼ f ¼ 27:5�’ exactly corresponds to ‘g ¼ 42:5�’ (de-
scribed in detail in Sections 2.2 and 2.3). This means that
the wedge obtains its maximum factor of safety when it
moves in a direction that a Mohr–Coulomb’s associative
material exhibits. If this coincidence represents a
common behavior, Pan’s ‘principle of maximum’ can
thus be supported by the Upper Bound Theorem in
plasticity, and a solution other than the traditional one
in wedge failure analysis should really be considered
seriously in our profession.
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The purposes of this paper are:
(1)
1 I

form

print
to present a generalized solution to wedge failure
analysis which allows input of any specified shear
force directions on the failure planes;
(2)
 to demonstrate that a maximum factor of safety
does exist when the wedge deforms in compliance
with the Mohr–Coulomb’s associative flow law;
(3)
 to discuss the theoretical and practical implications
of the findings described in this paper.
2. Background

2.1. Definition of the disturbance factors

For a soil or rock slope, the factor of safety F is
defined to be a coefficient that reduces the available
shear strength parameters c and f to ce and fe; which
bring the wedge to a limiting equilibrium:

ce ¼ c=F ; ð1Þ

tan fe ¼ tan f=F : ð2Þ

Consequently the following relationship applies:

T ¼ ceA þ N tan fe; ð3Þ

where N and T are effective normal and shear forces on
the failure surface, respectively, and A is the area of the
failure plane.
Sarma [7] suggested an alternative approach which

involves a horizontal force ZW 0 applied to the whole
failure mass. This gives rise to the limit equilibrium state
where Z is called critical acceleration coefficient and W 0

represents a disturbance force whose magnitude is the
weight of the failure mass. The main advantage of using
this approach is that Z can normally be determined by a
straightforward equation without the need for iteration.
Sarma’s approach also has an important feature in that
it brings the failure mechanism by loading rather than
the reduction of strength parameters, and consequently
renders an access to the framework of plasticity as will
be discussed subsequently. In wedge analysis where the
three-dimensional effect is of concern, the horizontal
disturbance force is further defined as having the same
dip direction as that of the line of intersection,
designated j:1 That is, ZW 0 and j constitute a vertical
plane.
It is possible to transfer the values of Z to a solution

for factor of safety normally required in engineering
practice. By finding Z for a series of ce and fe values
related to different values of F ; the solution for F ; which
n this paper an italic capital letter printed in bold and in regular

s represent a vector and its magnitude, respectively. A vector

ed in lower case means a unit vector.
is associated with Z ¼ 0; can then be found by
interpolation.

2.2. The concept of identical directions of shear force and

displacement

A basic relationship that relates the directions of
shear force and shear displacement (or velocity) on a
failure plane (hereafter referred to as ‘concept of
identical shear directions’) is introduced here.
It is stated that on a failure plane, shear displacement

takes place in the same direction in which the shear force
is applied. As has been discussed by Chen et al. [8], the
Mohr–Coulomb’s failure law requires that the shear
failure surface is perpendicular to the plane constituted
by the major and minor principal shear stresses (refer to
Fig. 3). This means that no shear displacement will
develop in the directions in which the intermediate
principal stress applies.
Neglecting the shear strain component in the direction

perpendicular to the plane constituted by the normal
and shear forces on a shear failure plane is a common
approach for all 3D limit analysis methods. With this
argument, Drescher and Kang [9] were able to confirm
that in the 3D space, the energy dissipation D developed
on a shear plane can be determined by the same
expression as that for the 2D areas for Mohr–
Coulomb’s associative material [10], i.e.,

D ¼ Vc cos f A; ð4Þ

where V is the plastic velocity on the failure plane.
Subsequent publications based on this equation include
the work by Michalowski [11], Lin and Drescher [12],
and Chen et al. [8].
It should be noted that in the framework of limit

analysis, the elastic strain is considered much smaller
than plastic strain and is neglected. The plastic velocity
V is regarded as the entire physical displacement rate of
the wedge as well.
Fig. 3. The ‘concept of identical shear directions’.
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With this concept, one is able to establish a relation-
ship between g and r; to be described in detail in the
subsequent section. In the example shown in the
Introduction, this concept enabled us to confirm that
‘g ¼ 42:5�’ corresponds to ‘r ¼ 27:5�’. Introducing this
concept is therefore of prime significance to the success
of the formulations presented in this paper.

2.3. Mathematical representations for various vectors

It has been found that representing a vector by a
linear combination of several independent vectors will
greatly facilitate the mathematical derivation required in
this work.
(1) The line of intersection. The unit vector of line of

intersection of the two planes, denoted by j; is
perpendicular to nl and nr; the inward normals of the
two planes. Therefore it can be expressed as

j ¼ nl � nr=D; ð5Þ

where D is magnitude of nl � nr; a coefficient that makes
j be unit. Defining y to be the angle between nl and nr;
the following relationships apply:

D ¼ sin y; ð6Þ

cos y ¼ nl � nr: ð7Þ

Also we have

j � nl ¼ 0

j � nr ¼ 0

)
ð8Þ

(2) Displacement vector of the wedge block. The unit
displacement vector of the wedge block, designated m; is
defined to incline at angles of rl and rr to the left and
right planes, respectively. It can be represented by
Fig. 4. Combinations of vectors for the shear forces: (a) repres

Fig. 5. The ‘Combined friction force’ vector: (
vectors j; nl; and nr as follows:

m ¼ amj þ bmnl þ cmnr; ð9Þ

where am; bm; and cm are coefficients that will be
determined based on ql and qr:
(3) Shear force vectors for the left and right planes.

Once m is determined, the unit shear force vector on the
left and right planes, designated T l and Tr; can be
determined based on the ‘concept of identical shear
directions’. Fig. 4(a) shows a vector triangle that is
illustrated in a cross section constituted by m and nl: The
unit vector of T l; designated tl; can be determined by

tl ¼ 	m sec rl þ nl tan rl: ð10Þ

Similarly for the right plane, we have

tr ¼ 	m sec rr þ nr tan rr: ð11Þ

(4) The ‘combined friction force’ for the left and right

planes. The internal force applied on a failure planes is
divided into two parts as shown in Fig. 5 which is
illustrated in a cross section constituted by m and the
normals of the two failure planes. The first part refers to
the cohesion force designated C l (or C r), whose
magnitude is celAl (or cerAr). This part of internal force
does not contain unknown variables except the value of
F ; if the ‘factor of safety approach’ is employed. The
second one, designated Pl (or Pr), is the resultant of the
normal force N l (or N r) and the friction force under the
application of the normal force. Obviously, Pl and Pr
are inclined at fl and fr to the normal of the left and
right planes, respectively. Since Pl and Pr will appear
frequently later, they are referred to as ‘combined
friction forces’ hereafter.
The unit ‘combined friction force’ vector on a plane is

also represented by the linear combination of m; nl; and
enting tl by m and nl and (b) representing tr by m and nr:

a) the left plane and (b) the right plane.
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Fig. 6. Combinations of vectors for the ‘Combined friction forces’: (a) representing pl by m and nl and (b) representing pr by m and nr:
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nr: From the vector triangle shown in Fig. 6(a),
illustrated in a cross section constituted by the m and
nl; it can be shown that

AB

sinðp
2
þ rl 	 felÞ

¼
BC

sin fel
¼

CA

sinðp
2
	 rlÞ

; ð12Þ

where the magnitude of CA is unity. Therefore pl; the
unit vector of ‘combined friction force’ on the left plane,
is

pl ¼ 	BCm þABnl ¼ 	
sin fel
cos rl

m þ
cosðrl 	 felÞ
cos rl

nl: ð13Þ

Similarly we have

pr ¼ 	
sin fer
cos rr

m þ
cosðrr 	 ferÞ
cos rr

nr: ð14Þ

(5) The external force vector of the wedge block. The
resultant of the wedge weight, external loads and pore
pressures applied on the two planes is denoted by W ;
with its unit vector of w: The pore pressures are known
constants and hence not explicitly separated from W for
brevity. The unit external force w is represented by

w ¼ awm þ bwnl þ cwnr: ð15Þ

Similarly, Sarma’s disturbance force vector w0 is
represented by

w0 ¼ aw0m þ bw0nl þ cw0nr: ð16Þ

The coefficients of a; b; and c with the various
subscripts involved in Eqs. (15) and (16) will be
determined subsequently.
(6) Basic relationships. It is well known from the

theory of vector analysis that

a � ðb � cÞ ¼ ða � bÞ � c ¼ b � ðc � aÞ; ð17Þ

a � ða � cÞ ¼ 0; ð18Þ

a � ðb � aÞ ¼ 0; ð19Þ

a � a ¼ 0; ð20Þ

a � a ¼ jaj2; ð21Þ

where a; b; and c are arbitrary vectors.
These expressions will greatly facilitate the mathema-
tical derivations shown in Section 3 and permit the
following relationships to apply:
(1) For m; we have from Eq. (9)

jmj2 ¼ ðamj þ bmnl þ cmnrÞ � ðamj þ bmnl þ cmnrÞ

¼ a2m þ b2m þ 2bmcm cos yþ c2m ¼ 1; ð22Þ

m � nl ¼ sin rl ¼ bm þ cm cos y

m � nr ¼ sin rr ¼ bm cos yþ cm

)
ð23Þ

Therefore bm and cm can be determined by

bm ¼
sin rl 	 cos y sin rr

sin2 y
; ð24Þ

cm ¼
sin rr 	 cos y sin rl

sin2 y
: ð25Þ

Substituting Eqs. (24) and (25) into Eq. (22),
through a straightforward but lengthy derivation one
obtains

am ¼m � j ¼ cosec y

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 y	 sin2 rr 	 sin

2 rl þ 2 sin rl sin rr cos y
q

:

ð26Þ

(2) For w; we have

w � nl ¼ aw sin rl þ bw þ cw cos y

w � nr ¼ aw sin rr þ bw cos yþ cw

)
ð27Þ

in which w � nl and w � nr are known, being independent
of F ; rl and rr: From Eq. (27), we have

bw ¼ ðw � nl 	 w � nr cos yÞ cosec2 y

þ ðsin rr cos y	 sin rlÞ cosec
2 yaw; ð28Þ

cw ¼ ðw � nr 	 w � nl cos yÞ cosec2 y

þ ðsin rl cos y	 sin rrÞ cosec
2 yaw: ð29Þ

aw can be determined by the following relationship:

w � j ¼ awm � j ¼ awam ð30Þ
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from which aw is calculated by

aw ¼
w � j

am

¼
w � j

cosec y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 y	 sin2 rr 	 sin

2 rl þ 2 sin rl sin rr cos y
q :

ð31Þ

The coefficients related to Sarma’s disturbance force
vector w0 could be expressed in similar equations.
Replacing all the arguments related to ‘w’ in Eqs. (27)–
(31) with w0; we obtain all necessary relationships for w0:
(3) For gl and gr; we have [refer to Eqs. (10) and (11)]

cos gl ¼ 	tl � j ¼ am sec rl
cos gr ¼ 	tr � j ¼ am sec rr

)
ð32Þ

3. Generalized formulations

3.1. Solutions for the ‘factor of safety approach’

(1) The equation for solving the factor of safety.
Assume that the wedge block is in a limiting equilibrium
state and shear failure develops on the left and right
planes. The wedge moves in a direction of m: The
generalized solution is obtained by projecting all the
forces applied on the wedge on an axis that is
perpendicular to both the left and right ‘combined
friction force’ vectors pl and pr: This enables the
elimination of the unknown Pl and Pr; leaving only
one unknown, the factor of safety F ; involved in the
force equilibrium equation. The direction of this axis
can be represented by vector Q; the cross product of pl
and pr; which are found in Eqs. (13) and (14).

Q ¼ pl � pr ¼ 	
sinfel cosðrr 	 ferÞ

cos rl cos rr
m � nr

	
sin fer cosðrl 	 felÞ

cos rl cos rr
nl � m

þ
cosðrl 	 felÞ cosðrr 	 ferÞ

cos rl cos rr
nl � nr: ð33Þ

By virtue of Eqs. (10), (11) and (28)–(31) the projec-
tions of cohesion forces C el; C er and external weight W
on Q are expressed respectively as follows:

Q � C el ¼ celAlQ � tl

¼
sin fel cosðrr 	 ferÞ

cos rl cos rr
tan rl

�

	
cosðrl 	 felÞ cosðrr 	 ferÞ

cos rl cos rr
sec rl

�
celAlm � j=D

¼ 	 cos fel cosðrr 	 ferÞ

� celAl sec rl sec rrm � j=D; ð34Þ
Q � C er ¼ cerArQ � tr

¼
sinfer cosðrl 	 felÞ

cos rl cos rr
tan rl

�

	
cosðrr 	 ferÞ cosðrl 	 felÞ

cos rl cos rr
sec rr

�
cerArm � j=D

¼ 	 cos fer cosðrl 	 felÞ

� cerAr sec rl sec rrm � j=D ð35Þ

Q � W ¼WQ � w

¼ ½sinfel cosðrr 	 ferÞbw þ cosðrl 	 felÞ sin fercw

þ aww cosðrl 	 felÞ cosðrr 	 ferÞ�

� sec rl sec rrWm � j=D; ð36Þ

where Al and Ar are areas of the left and right failure
planes, respectively.
The force equilibrium condition is

Q � C el þ Q � C er þ Q � W ¼ 0 ð37Þ

which leads to

Oðrl;rr;F Þ ¼ 	 cos fel cosðrr 	 ferÞcelAl
	 cos fer cosðrl 	 felÞcerAr
þ ½sin fel cosðrr 	 ferÞbw

þ cosðrl 	 felÞ sin fercw

þ aw cosðrl 	 felÞ cosðrr 	 ferÞ�W

¼ 0: ð38Þ

Eq. (38) is the governing equation of the generalized
method and involves an unknown variable F that is
included in the variables with subscripts ‘e’. Once a set
of rl and rr is input into Eq. (38), F can be obtained by
iterations. It has been found that the Newton–Raphson
method in most cases allows very rapid convergence in
the numerical procedures.
(2) Solutions for the normal forces. Once the factor of

safety is obtained, the normal forces N l and N r can be
readily determined. A convenient way of obtaining N l

can be projecting all the forces on the axis that is
perpendicular to nr and tr; designated U : Consequently
the internal forces applying on the right plane do not
appear in the projection, leaving only one unknown N l

to be obtained. U is represented by

U ¼ tr � nr ¼ ð	m sec rr þ nr tan rrÞ � nr

¼ 	 m � nr sec rr: ð39Þ

Projections of tl; nl and w on U are determined by the
following equations, respectively:

U � tl ¼ ð	m � nr sec rrÞ � ð	m sec rl þ nl tan rlÞ

¼ tan rl sec rrm � j=D; ð40Þ

U � nl ¼ sec rrm � j=D; ð41Þ

U � w ¼ ð	m � nr sec rrÞ � ðawm þ bwnl þ cwnrÞ

¼ bw sec rrm � j=D: ð42Þ
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The condition that

U � nlNl þ ðcelAl þ Nl tan felÞU � tl þ U � wW ¼ 0 ð43Þ

gives

Nl ¼ 	
celAl tan rl þ bwW

1þ tan rl tan fel
: ð44Þ

A similar derivation gives

Nr ¼ 	
cerAr tan rr þ cwW

1þ tan rr tan fer
: ð45Þ
Z ¼
cos fl cosðrr 	 frÞclAl þ cos fr cosðrl 	 flÞcrAr

½sin fl cosðrr 	 frÞbw0 þ cosðrl 	 flÞ sin frcw0 þ aw0w cosðrl 	 flÞ cosðrr 	 frÞ�W 0

	
½sin fl cosðrr 	 frÞbw þ cosðrl 	 flÞ sin frcw þ aww cosðrl 	 flÞ cosðrr 	 frÞ�W
½sin fl cosðrr 	 frÞbw0 þ cosðrl 	 flÞ sin frcw0 þ aw0w cosðrl 	 flÞ cosðrr 	 frÞ�W 0: ð49Þ
(3) The condition of physical admissibility. The input of
rl and rr are not arbitrary, but subject to some
kinematic conditions. In other words, the wedge may
not be able to dilate in the specified values of rl and rr
on some occasions. The admissibility condition may be
stated such that am defined by Eq. (26) must have a real
root, i.e.

sin2 y	 sin2 rr 	 sin
2 rl þ 2 sin rl sin rr cos yX0: ð46Þ
If a set of rl and rr violates the requirement for
physical admissibility, it will be rejected. The factors of
safety may be bounded by a series of solutions related to
the input of rl and rr that satisfies the equality condition
of Eq. (46). Example 3 in Section 3.3 gives further
explanation.
(4) Solutions for the case of tension on one plane. If the

normal force on a plane calculated from either Eq. (44)
or Eq. (45) is negative, tension would develop on one
plane and the wedge would separate from that plane
first, followed by a slip along the steepest descendent
direction of the other plane. Solutions related to this
case have been discussed by Hoek and Bray [1]. In the
generalized solution, a procedure of checking N l or N r

associated with all possible input of rl and rr is
performed. Only when all possible N l or N r values are
negative will the wedged be analyzed on the ‘tension
failure’ basis, as shown in Example 2 of Section 3.3.
In the case of N rp0 for all possible rl and rr; tl; nl

and w lie on the same plane. The factor of safety is
determined by

F ¼
clAl þ W cos c tan fl

W sin c
; ð47Þ
2The source programs and data files of all the examples described in

this paper can be found at the web site: www.geoeng.iwhr.com/geoeng/

download.htm.
where c is the angle between nl and w: Similar derivation
can find the factor of safety for the case of N lp0:
3.2. Solutions for the ‘critical acceleration approach’

In the critical acceleration approach, the strength
parameters are not reduced, which means subscripts ‘e’
involved in all equations in Section 3.1 no longer exist.
As a substitution, the coefficient of critical acceleration Z
is added, making an equation equivalent to Eq. (37) as

Q � C l þ Q � C r þ Q � W þ Q � ZW 0 ¼ 0 ð48Þ

from which we have
The arguments related to the determination of normal
forces, the requirements for physical admissibility and
check of tension on the failure planes described in
Section 3.1 are similar and not listed here.

3.3. Illustrative examples

A computer program has been developed to imple-
ment the numerical procedures described in this
section.2 To make the output more illustrative, the
values of rl and rr that satisfy Eq. (38) are expressed by
r0l and r0r with the definition:

tan rl ¼
tan r0l

F

tan rr ¼
tan r0r

F

9>>=
>>; ð50Þ

r0l and r0r are called unreduced values of rl and rr and
will be compared with the unreduced values fl and fr;
as will be shown in the subsequent examples.

Example 1. This problem is related to a typical wedge
with the geometry and geotechnical properties shown in
Table 2.
Values of the factors of safety associated with various

inputs of rl and rr were obtained by solving Eq. (38). All
solutions have positive normal forces Nl and Nr;
obtained from Eqs. (44) and (45). Fig. 7(a) shows the
contours of F versus r0l and r0r:
From these contours, one finds a maximum value of

F ¼ 1:521 that is associated with r0l ¼ fl ¼ 20
� and r0r ¼

fr ¼ 30
� (or rl ¼ fel ¼ 13:46

� and rr ¼ fer ¼ 20:79
�).

The traditional method associated with r0l ¼ 0 and r0r ¼
0 gives F ¼ 1:411: Fig. 7(b) gives the ‘equal Z contours’
for the ‘disturbance force approach’ based on Eq. (49).

http://www.geoeng.iwhr.com/geoeng/download.htm
http://www.geoeng.iwhr.com/geoeng/download.htm
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Fig. 7. Solutions of Example 1 associated with various r0l and r0r: (a)
contours of equal F and (b) contours of equal Z:

Table 2

Parameters for Test problem 1

Surface Dip

direction

Dip

angle

Friction

angle

Cohesion

ð9:8 kPaÞ

Left 105� 45� 20� 5

Right 235� 70� 30� 5

Crest 195� 12�

Slope 185� 65�

Note: Height ¼ 100 m; and unit weight ¼ 2:6� 9:8 kN=m3:

Table 3

Parameters for Test problem 2

Surface Dip

direction

Dip

angle

Friction

angle

Cohesion

(kPa)

Left 195� 60� 35 29.4

Right 235� 70� 30 29.4

Crest 195� 12�

Slope 185� 65�

Note: Height ¼ 100 m and unit weight ¼ 2:6� 9:8 kN=m3:

Z. Chen / International Journal of Rock Mechanics & Mining Sciences 41 (2004) 613–628620
Again it confirms that at rl ¼ fl and rr ¼ fr; Z reached
a maximum of 0.288.

Example 2. This problem is purposely designed to have
steep dip angles and relatively large friction angles
related to the two failure planes, as shown in Table 3.
Some unusual behavior is expected to occur.
Fig. 8 gives the calculated details associated with

various r0l and r0r: It can be found that a majority of
solutions, including those given by the traditional
method, are related to negative values of Nl or Nr:
However, there is still an area that does provide
reasonable values of F associated with positive normal
forces Nl and Nr; which are ranged between 0.975 and
0.80, as shown in Fig. 8. Within the framework of the
generalized method, this problem is still considered a
typical wedge shear failure rather than that of ‘tension
plane’ case.

Example 3. This problem is taken from Case No. 3 of
the example of the Three Gorges Project ship lock slope
that will be discussed in more detail in Section 5. The
input parameters are shown in Table 4. The large value
of y; the angle between the normals of the two failure
planes, makes Eq. (46) unsatisfied at some values of rl
and rr: Fig. 9 shows the area that Eq. (46) fails to
apply, and the factor of safety at rl ¼ fel and rr ¼ fer is
not obtainable. The physically admissible solutions are
bounded by an equal F contour of F ¼ 1:40;
more thorough search gave a maximum value of
F ¼ 1:419:
4. Theoretical aspects

4.1. Demonstration of the ‘Principle of maximum’

From the results of the examples shown in the
Introduction and Section 3.3, we found that a maximum
factor of safety or coefficient of critical acceleration
exists when the wedge dilates at friction angles to the
failure planes. With the governing equation (38) or (49),
it is possible to give a formal demonstration.
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Fig. 8. Contours of factors of safety for Test problem 2 and the areas of ‘tension plane’.

Table 4

Parameters for Test problem 3

Surface Dip direction Dip angle Friction angle Cohesion

Left 345� 60� 31� 0

Right 76� 70� 31� 0

Crest 201� 0�

Slope 201� 90�

Note: Height ¼ 100 m; unit weight ¼ 2:7� 9:8 kN=m3 and ru ¼ 0:1:
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(1) The ‘factor of safety approach’. The statement for
the ‘factor of safety approach’ is as follows:

Among all kinematically admissible sets of rl and rr;
the one associated with rl ¼ fel and rr ¼ fer makes F ;
determined by Eq. (38), a maximum.
Suppose there is an increment in Drl that results in an

increment in DF : To ensure that Eq. (38) still applies,
the following equation must be satisfied:

qO
qrl

Drl þ
qO
qF

DF ¼ 0 ð51Þ

or

qO
qrl

þ
qO
qF

qF

qrl
¼ 0: ð52Þ

Therefore, the necessary condition that makes
qF=qrl ¼ 0 is qO=qrl ¼ 0: The same condition applies
to the argument for rr: We then go on demonstrating
the following statement:

Among all kinematically admissible sets of rl and rr;
the one associated with rl ¼ fel and rr ¼ fer makes

qO=qrl ¼ 0 and qO=qrr ¼ 0:
Substituting Eqs. (28) and (29) into Eq. (38) We have

Oðrl;rr;F Þ ¼ 	 cos fel cosðrr 	 ferÞcelAl
	 cos fer cosðrl 	 felÞcerAr
þ ðw � nl 	 w � nr cos yÞ sin fel
� cos ðrr 	 ferÞ cosec

2 yW

þ ðw � nr 	 w � nl cos yÞ sin fer cosðrl 	 felÞ

� cosec2 yW þ aw½ðsin rr cos y	 sin rlÞ

� sin fer cosðrr 	 ferÞ

þ ðsin rl cos y	 sin rrÞ sin fer cosðrl 	 felÞ

þ cosðrl 	 felÞ cosðrr 	 ferÞ

� sin2 y� cosec2 yW ¼ 0: ð53Þ

It is obvious that the previous four terms on the right-
hand side of Eq. (53) have their first-order partial
derivatives for rl and rr respectively set to zero at rl ¼
fel and rr ¼ fer:We now concentrate on demonstrating
that at rl ¼ fel and rr ¼ fer; the following equations
apply:

Sl ¼
q
qrl

faw½ðsin rr cos y	 sin rlÞ sin fel cosðrr 	 ferÞ

þ ðsin rl cos y	 sin rrÞ sin fer cosðrl 	 felÞ

þ cosðrl 	 felÞ cosðrr 	 ferÞ sin
2 y�g ¼ 0 ð54Þ

and

Sr ¼
q
qrr

faw½ðsin rr cos y	 sin rlÞ sin fel cosðrr 	 ferÞ

þ ðsin rl cos y	 sin rrÞ sin fer cosðrl 	 felÞ

þ cosðrl 	 felÞ cosðrr 	 ferÞ sin
2 y�g ¼ 0: ð55Þ
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Fig. 9. Contours of factors of safety for Test problem 3 and the area that violates the condition of physical admissibility.
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Sl can be separated by two parts.

Sl ¼ A1 þ A2; ð56Þ

where:

A1 ¼
qaw

qrl
½ðsin rr cos y	 sin rlÞ sin fel cosðrr 	 ferÞ

þ ðsin rl cos y	 sin rrÞ sin fer cosðrl 	 felÞ

þ cosðrl 	 felÞ cosðrr 	 ferÞ sin
2 y�; ð57Þ

A2 ¼ aw½	cos rl sin fel cosðrr 	 ferÞ þ cos rl cos y sin fer
� cosðrl 	 felÞ 	 ðsin rl cos y	 sin rrÞ

� sin fer sinðrl 	 felÞ 	 sinðrl 	 felÞ

� cosðrr 	 ferÞ sin
2 y�: ð58Þ

We introduce the following basic relationships from
Eq. (26) and Eq. (31):

qam

qrl
¼
1

am

cosec2 yðcos rl sin rr cos y	 sin rl cos rlÞ; ð59Þ

q
qrl

1

am


 �
¼ 	

1

a3m
cosec2 y

� ðcos rl sin rr cos y	 sin rl cos rlÞ; ð60Þ
qaw

qrl
¼ 	 w � j

1

a3m
cosec2 y

� ðcos rl sin rr cos y	 sin rl cos rlÞ: ð61Þ

By substituting Eqs. (59) and (61) into Eqs. (57) and
(58), one obtains

A1 ¼ 	 w � j
1

a3m
ðcos rl sin rr cos y	 sin rl cos rlÞ

� ½ðsin rr cos y	 sin rlÞ sin fel cosðrr 	 ferÞ

þ ðsin rl cos y	 sin rrÞ sin fer cosðrl 	 felÞ

þ cosðrl 	 felÞ cosðrr 	 ferÞ sin
2 y� cosec2 y ð62Þ

and

A2 ¼
w � j

a3m
ðsin2 y	 sin2 rr 	 sin

2 rl þ 2 sin rl sin rr cos yÞ

� ½	cos rl sin fel cosðrr 	 ferÞ

þ cos rl cos y sin fer cosðrl 	 felÞ 	 ðsin rl cos y

	 sin rrÞ sin fer sinðrl 	 felÞ

	 sinðrl 	 felÞ cosðrr 	 ferÞ sin
2 y� cosec2 y: ð63Þ

It is not difficult to find that for rl ¼ fel and rr ¼ fer;
the reduced expressions of Eqs. (62) and (63) make
Eq. (54) apply. A similar derivation will prove Eq. (55).
A complete demonstration requires the sufficient

conditions q2F=qr2lo0 and q2F=qr2ro0 to be satisfied
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at rl ¼ fel and rr ¼ fer: However, as in many areas
related to the determinations of extremes (e.g. the finite
element formulations based on the ‘principle of mini-
mum potential energy’), this statement is not demon-
strated on an analytical basis but justified through
practical applications. The test problems described in
this paper and many subsequent applications follow this
rule.
(2) The ‘critical acceleration approach’. The statement

of the ‘principle of maximum’ for the ‘critical accelera-
tion approach’ is as follows:

Among all kinematically admissible sets of rl and rr;
the one associated with rl ¼ fl and rr ¼ fr makes

qZ=qrl ¼ 0 and qZ=qrr ¼ 0; where Z is determined by
Eq. (49).
Eq. (49) can be written as

Z ¼
B2

B1
þ

B3

B1
; ð64Þ

where

B1 ¼ ½sin fl cosðrr 	 frÞbw0 þ cosðrl 	 flÞ sin fr � cw0

þ aw0w cosðrl 	 flÞ cosðrr 	 frÞ�W
0;

B2 ¼ cos fl cosðrr 	 frÞclAl
þ cos fr cosðrl 	 flÞcrAr; ð65Þ

B3 ¼ ½sin fl cosðrr 	 frÞbw þ cosðrl 	 flÞ sin fr � cw

þ aww cosðrl 	 flÞ cosðrr 	 frÞ�W : ð66Þ

We have

qZ
qrl

¼
1

B1

qB2

qrl
	
1

B21

qB1

qrl
B2 þ

1

B1

qB3

qrl
	
1

B21

qB1

qrl
B3: ð67Þ

By procedures almost identical to those described in
the previous paragraph, it is possible to demonstrate
that at rl ¼ fl and rr ¼ fr;
qB1

qrl
¼ 0;

qB2

qrl
¼ 0; and

qB3

qrl
¼ 0 ð68Þ

which leads to

qZ
qrl

¼ 0: ð69Þ

Similar arguments will demonstrate that at rl ¼ fl
and rr ¼ fr:
qZ
qrr

¼ 0: ð70Þ

4.2. Reducing the generalized solutions to the special

cases

In the illustrative example of Introduction, two
special cases lead to the solutions to F being equal to
0.727 and 1.002, respectively. The first case, referred
here as ‘conventional’ or ‘traditional’ method, assumes
that gl and gr are zero. This case actually means non-
dilative behavior of the material (rl and rr are zero). The
second case starts from plastic velocity of the wedge that
dilates at values of friction angles to the two failure
planes. The work-energy balance equation involved in
the Upper Bound Theorem permits a solution, which
has been demonstrated to be associated with the
maximum possible factor of safety of the wedge.
It has been found that the generalized solution is

reducible to the two cases. A formal demonstration is
given in the appendix.

4.3. Discussions on the theoretical implication of the

generalized solution

Suppose that a set of internal force balances the
external loads:

C l þ C r þ Pl þ Pr þ W þ ZW 0 ¼ 0: ð71Þ

According to the demonstration in Section 4.1, if
rlofl and rrofr; further loading related to a positive
DZ is possible to transfer the equilibrium to a new state
that satisfies

C l þ DC l þ C r þ DC r þ Pl þ DPl

þ Pr þ DPr þ W þ ðZþ DZÞW 0 ¼ 0: ð72Þ

The plastic velocity developed by the increment of
external load DZ W 0 is V : Then ½Eq: ð72Þ-Eq: ð71Þ� � V
gives

	 ðDC l � V þ DC r � V þ DPl � V þ DPr � VÞ

¼ DZ W 0 � V : ð73Þ

The left-hand side of Eq. (73) is the plastic energy
done by the stress increment and represented byR

Al
dsij ’e dAl þ

R
Ar
dsij ’e dAr; where dsij and ’e denote

the stress increment and the plastic velocity incurred by
the stress increment, respectively. According to Druck-
er’s Postulate, this term should be non-negative if the
material is stable. It follows that DZ is non-negative.
We now come to the conclusion that the ‘principle of

maximum’ is in fact another way to describe Drucker’s
Postulate. However, the positive value of DZ is
confirmed by the rigorous mathematical demonstra-
tions. The generalized solution thus presents a support
to Drucker’s Postulate under a special condition—the
wedge failure.
It has been demonstrated that no further loading

would be possible at rl ¼ fl and rr ¼ fr: The general-
ized solution therefore presents another support to the
Mohr–Coulomb’s associative flow law under the special
condition—the wedge failure.
We know that neither Drucker’s Postulate nor the

‘principle of maximum’ is a fully proven fundamental
law of nature. The theoretical implication of the
generalized solutions described in this paper may be
interpreted in the following several alternative ways.
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Fig. 10. A typical cross section of the ship lock slope of the Three Gorges Project. Legend: IV, III, II, I refer to the completely, heavily, slightly

weathered and intact rock mass, respectively. bm is the pegmatitic dikes.
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(1)
 When a wedge is under loading, it would dilate as
much as possible to accommodate the external load.
The maximum resistance occurs when it dilates at
values of friction angles to its respective failure
planes.
(2)
 Dilation is a material behavior rather than a
mechanical condition. Therefore, in addition to the
conventional shear strength test, the dilation angle
of the material upon failure should be measured by
field and laboratory tests and treated as input in the
generalized solution.
(3)
 As a controversial understanding, one may believe
that a wedge would fail in a stress mode that
provides the least resistance. Therefore, the tradi-
tional method is the only acceptable solution.
Another argument may be that the traditional
method relates to incipient failure, which may be
transferred to imminent failure when the upper
bound solution applies.
Alternative (1) gives the upper bound solution to the
factor of safety. Alternative (3) normally gives the
smallest factor of safety, although formal demonstration
is not yet available. Alternative (2) gives an intermediate
value of F :
Obviously, this is not only an issue of theory, but also

a problem of practice and observation for the future.
Performing physical model tests, preferably centrifuge
tests, may be an approach to better understanding to
these issues.
3 In hydraulic engineering, people normally refer ‘left’ and ‘right’ by

looking downstream of the river.
5. Applications

In order to understand the impact of the generalized
solution on our routine design procedures, the author
reviewed the wedge stability analysis results for the ship
lock slope at the Three Gorges Project. This navigation
facility contains two routes, each consisting of five levels
of locks. A typical cross section of the ship lock is shown
in Fig. 10, from which one may find that the locks have
vertical side-walls, susceptible to wedge failure. Fig. 11
shows a typical wedge identified and reinforced by the
designers. The axis of the ship lock line strikes at 111�:
The dip directions of the left and right walls are 201�

and 21�; respectively.3 The geology of the rock mass
consists of amphibole granite (Pre-Sinian Period) with
four dominating sets of joints dipping at 50�–75�; which
present wedge failure potentials. Pegmatitic dikes are
commonly encountered, which may also contribute to
wedge failures. A total of 40 long and persistent faults
were discovered during excavation. These discontinu-
ities provide multiple chances to create potentially
unstable wedges. The geologists identified more than
200 potential wedges and investigated the stability for
each one. Prestressed cables were installed if the wedge
block was considered to be unstable.
The geologists recommended two alternatives for

shear strength evaluations. The first one, called the
‘pure friction approach’, employs a unique friction angle
of 31� for the two failure planes. The factor of safety
using this parameter must be greater than unity. The
second alternative, referred to as ‘c 	 f approach’,
involves using a cohesion of 0:1 MPa with required
factor of safety larger than 2.0. The investigation also
includes two approaches for pore pressure input, i.e.,
ru ¼ 0 and 0.1, where ru is the pore pressure coefficient.
The difference between the results of the conventional

and upper bound methods is evaluated by the relative
difference x defined as

x ¼
Fu 	 Fc

Fu
; ð74Þ



ARTICLE IN PRESS

Fig. 11. A reinforced wedge in the ship lock (Three Gorges Project).

Table 5

Factors of safety of the Three Gorges Ship lock wedges, the ‘c 	 f approach’

No. Location Failure Dip Dip Height ru ¼ 0 ru ¼ 0:10

planes direction angle (m) Fc Fu x ð%Þ Fc Fu x ð%Þ

1 2-S-R f1101 91� 70� 34.8 1.932 2.077 7.0 1.644 1.813 9.3

fy3-84ðaÞ 231� 60�

2 2-S-L f1101 94� 70� 28.4 2.654 2.854 7.0 2.266 2.488 8.9

fy-71ðb9Þz 225� 75�

3 3-N-R f1008 345� 76� 32.1 3.145 3.509 10.4 2.633 3.059 13.9

bm1004 130� 80�

4 3-N-L f1005 244� 70� 24 4.293 4.428 3.0 3.859 4.008 3.7

f301115 96� 61�

5 4-N-L f205 280� 60� 14.9 4.604 4.707 2.2 4.055 4.172 2.8

fy-21ðAÞ4 140� 70�

6 4-S-R fy3-34ðc3Þ4 340� 70� 17.2 4.121 4.273 3.6 3.736 3.903 4.3

fy-35ðB3Þ4 120� 70�

Note: (1) Unit weigh of rock ¼ 2:7� 9:8 kN=m3: (2) In case No. 1, the symbol ‘2-S-R’ means: Gate No. 2, the South Chamber, and the right side-
wall. Similar explanations apply to the other cases. (3) The dip directions of the left and right side-walls are 201� and 21�; respectively.
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where Fc and Fu are factors of safety associated with the
conventional and upper bound methods, respectively.
Tables 5 and 6 present the factors of safety for six

typical wedges evaluated by both the ‘c 	 f’ and ‘pure
friction’ approaches using the traditional and upper
bound methods, respectively. All the cases are related to
typical wedge failure with both traditional and upper
bound solutions except Case 3 and ru ¼ 0:1 in Table 6,
which fails to find Fu due to violation of the condition of
physical admissibility. This case has been discussed in
detail in Example 3 of Section 3.3.
The x values contained in the tables indicate that the
deviation between the two approaches increases as the
height of the wedge, pore pressure, or the friction angles
of the material increases. Among them, the friction
angle is the most prominent factor. Fig. 12 gives a
sensitivity analysis by taking different cohesion for Case
3 ðru ¼ 0Þ in Table 5, from which we find that x varies
from 10.4% to 39.6% as c changes from 0:1 MPa to
zero.
The situation now encountered is quite similar to that

when methods with fewer assumptions were developed
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Table 6

Factors of safety of the Three Gorges ship lock wedges, the ‘pure friction approach’

No. Location Failure Dip Dip Height ru ¼ 0 ru ¼ 0:10

planes direction angle (m) Fc Fu x ð%Þ Fc Fu x ð%Þ

1 2-S-R f1101 91� 70� 34.8 0.913 1.191 23.3 0.625 0.988 36.7

fy3-84ðaÞ 231� 60�

2 2-S-L f1101 94� 70� 28.4 0.921 1.397 34.1 0.522 1.173 55.5

fy-71ðb9Þz 225� 75�

3 3-N-R f1008 345� 76� 32.1 1.181 1.954 39.6 0.669 1.419a 52.9

bm1004 130� 80�

4 3-N-L f1005 244� 70� 24 2.061 2.330 11.5 1.627 1.956 16.8

f301115 96� 61�

5 4-N-L f205 280� 60� 14.9 1.575 1.854 15.0 1.025 1.417 27.7

fy-21ðAÞ4 140� 70�

6 4-S-R fy3-34ðc3Þ4 340� 70� 17.2 1.362 1.770 23.1 0.978 1.495 34.6

fy-35ðB3Þ4 120� 70�

Note: (1) Unit weight of rock ¼ 2:7� 9:8 kN=m3: (2) In case No. 1, the symbol ‘2-S-R’ means: Gate No. 2, the South Chamber, and the right side-
wall. Similar explanations apply to the other cases. (3) The dip directions of the left and right side-walls are 201� and 21�; respectively.
aThis problem cannot find an upper bound solution as the condition of physical admissibility is violated. Details have been given in Test problem 3

of Section 3.3.
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0 6 10
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η

42 8

Fig. 12. Values of relative difference x associated with varying

cohesion c for case 3 ðru ¼ 0Þ of Table 5.
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in soil slope stability analysis, such as the Simplified
Bishop’s [13] and Morgenstern–Price [14] methods. It
has been found that the traditional Swedish method
(Fellenius, 1927) [15] normally underestimates the factor
of safety by 10%. However, sometimes the deviation
may be as large as 50% or more, if the values of the arc
angle of the slip circle and the pore pressure are large
[16–18]. In engineering practice, introducing more
rigorous methods is normally accompanied by a more
stringent requirement for allowable factor of safety. The
Chinese Design Codes for Embankment Dams specifies
that Simplified Bishop’s method would be associated
with an allowable factor of safety 10% higher than that
associated with Swedish method [19].
Since the conventional wedge analysis method and
‘pure friction approach’ are still the standard design
approaches in dam engineering, all wedges in the ship
lock with insufficient factors of safety by the traditional
method were reinforced. Table 6 shows that if the
generalized method were used, some of the cases would
have had no need for reinforcement.
6. Conclusions

The main findings of this paper can be summarized as
follows:
(1) A generalized limit equilibrium analysis method

for tetrahedral rock wedge stability analysis has been
proposed. The main formulation includes:

* establishing a wedge displacement m that inclines at
rl and rr to the left and right planes respectively;

* determining the directions of the shear forces applied
on the failure planes based on the ‘concept of
identical shear directions’;

* representing all the forces applied on the wedge by
the linear combinations of m and the inward normals
nl and nr;

* establishing the force equilibrium equation by pro-
jecting all the forces on an axis that is perpendicular
to both the left and right ‘combined friction forces’.
This allows the elimination of all the six unknown
components of the two ‘combined friction forces’.
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The principles in Vector Analysis [Eqs. (17)–(21)]
have made it possible to reach a governing equation
Eq. (38), from which the factor of safety is solved.

(2) It has been found that the case rl ¼ 0 and rr ¼ 0 is
associated with the conventional wedge stability analysis
method which involves an assumption that the shear
forces applied on the failure planes are parallel to the
line of intersection. It normally gives a smallest F ;
designated Fc: Another case, associated with rl ¼ fel
and rr ¼ fer; which implies that the wedge moves in a
direction required by a Mohr–Coulomb’s associative
flow material, gives an upper bound solution, designated
Fu:
(3) A mathematical demonstration is presented to

confirm that F obtains its maximum at rl ¼ fel and
rr ¼ fer provided that the conditions of physical
admissibility illustrated in Sections 3.1 are not violated.
This fact indicates that if Mohr–Coulomb’s associative
flow law applies, a wedge would indeed fail when the
maximum resistance is developed, as proposed by Pan’s
principle of maximum.
(4) The results obtained from the test problems and

case study show that the difference between Fc and Fu is
not substantial if the shear strength of the failure planes
involves a reasonable value of cohesion. Fc can be
considerably lower than Fu if the material is purely
frictional. The example of the Three Gorges ship lock
gives an appreciation of what the economical impact the
generalized solution can bring.
Obviously our profession will not replace the tradi-

tional solution with a more optimistic assessment of the
stability status of a wedge until more evidence from case
studies and physical model testing has confirmed the
theory and made it widely accepted. However, a
challenge to the conventional approach has been raised
and further study on this subject is of both theoretical
and practical significance.
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Appendix A. Reducing the generalized solutions to the

special cases

This section demonstrates that Eq. (38) is reducible to
two special methods documented in the literatures [1,6].
1. The traditional method
(1) The original presentations of the solution. The

conventional rock wedge analysis method assumes that
the shear forces on the left and right failure planes are
parallel to j; the line of intersection. By projecting all the
forces on the plane perpendicular to j; it is possible to
avoid the two unknown shear forces and obtain the
effective normal forces N l and N r applied on the left and
right planes, respectively. Hoek and Bray [1] provided
the relevant equations that can be rewritten in the
following vector analysis form:

Nl ¼ ðcos yw � nr 	 w � nlÞ cosec2 yW ; ðA:1Þ

Nr ¼ ðcos yw � nl 	 w � nrÞ cosec2 yW : ðA:2Þ

The force equilibrium condition in the direction of
line of intersection of the planes gives

Nl tan fel þ Nr tan fer þ celAl þ cerAr ¼ Ww � j: ðA:3Þ

The factor of safety F is involved in the subscripts ‘e’,
defined by Eqs. (1) and (2).
(2) The reduced generalized solutions. We know that in

the conventional method, rl and rr are zero. By
substituting these conditions into Eq. (38), we have

	 celAl 	 cerAr þ ðtan felbw

þ tan fer � cw þ awÞW ¼ 0: ðA:4Þ

From Eqs. (26), (28), (29) and (31), we have

am ¼ 1; ðA:5Þ

aw ¼ w � j; ðA:6Þ

bw ¼ ðw � nl 	 w � nr cos yÞ cosec2 y; ðA:7Þ

cw ¼ ðw � nr 	 w � nl cos yÞ cosec2 y: ðA:8Þ

Eq. (A.4) becomes

celAl þ cerAr 	 ½tan felðw � nl 	 w � nr cos yÞ þ tan fer
� ðw � nr 	 w � nl cos yÞ�W cosec2 y ¼ awW : ðA:9Þ

It is not difficult to show that Eq. (A.9) is identical to
Eq. (A.3).
2. The upper bound approach
(1) The original presentations of the solution. Based on

the Upper Bound Theorem of Plasticity, Chen et al. [6]
provide a solution to factor of safety by solving the
following equation:

cerAr cos fer þ celAl cos fel ¼ Ww � v; ðA:10Þ

where v is the unit vector of a plastic velocity that
inclines at fel and fer to the left and right planes,
respectively. In this paper v is referred to as m (refer to
Fig. 5). The left-hand side of Eq. (A.10) refers to the
energy dissipation developed on the failure planes, while
the right-hand side refers to the work done by external
loads. From Fig. 5 it can be found that if rl and rr are
equal to fl and fr; respectively, Pl and Pr are
perpendicular to m and therefore would not contribute
to the energy dissipation.
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m can be uniquely determined by solving the
following equations:

m � nl ¼ sin fl; ðA:11Þ

m � nr ¼ sin fr: ðA:12Þ

(2) The reduced generalized solutions. We know that in
the upper bound method, rl ¼ fel and rr ¼ fer: By
substituting these conditions into Eq. (38), one obtains

	 cos felcelAl 	 cos fercerAr
þ ðsin felbw þ sin fer � cw þ awÞW ¼ 0: ðA:13Þ

From Eq. (9) we have [refer to Eq. (A.11) and (A.12)]

sin felbw þ sin fer � cw þ aw ¼ w � m ¼ w � v: ðA:14Þ

Eq. (A.13) then reduces to Eq. (A.10).
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