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NOTE / NOTE

A simplified method for 3D slope stability analysis

Zuyu Chen, Hongliang Mi, Faming Zhang, and Xiaogang Wang

Abstract: This paper presents a simplified three-dimensional (3D) slope stability analysis method based on the limit
equilibrium theory. The assumption involved in this method is of a parallel intercolumn force inclination, similar to
Spencer’s method in the two-dimensional (2D) area. It allows for the satisfaction of complete overall force equilibrium
conditions and the moment equilibrium requirement about the main axis of rotation. The method has been proven to be
numerically tractable for many practical problems. By combining this method with the 3D upper bound approaches, it
is possible to bracket the accurate solution of a 3D slope stability analysis problem into a small range.

Key words: slope stability analysis, three-dimensional analysis, limit equilibrium method, upper bound method.

Résumé : Cet article présente un méthode simplifiée d’analyse a 3D de stabilité de talus basée sur la théorie
d’équilibre limite. L’hypothese impliquée dans cette méthode est I’inclinaison parallele des forces inter tranches,
comme dans la zone a 2D de la méthode Spencer. Elle permet de satisfaire completement les conditions d’équilibre des
forces globales et I’exigence de 1’équilibre des moments autour de 1’axe principal de rotation. On a démontré que la
méthode est numériquement soluble pour plusieurs problémes pratiques. En combinant cette méthode avec des appro-
ches de limite supérieure 3D, il est possible de confiner a I'intérieur d’une faible plage la solution précise de 1’analyse

3D d’un probleme de stabilité de talus.

Mots clés : analyse de stabilité de talus, analyse tridimensionnelle, méthode d’équilibre limite, méthode de limite

supérieure.

[Traduit par la Rédaction]

Introduction

Field observations of landslide failure surfaces typically
display spatial variability. However, analyses of these slides
are usually limited to two-dimensional (2D) approximations.
The demand for practical, three-dimensional (3D) slope
stability analysis methods and their associated user-friendly
computer programs is high (Seed et al. 1990; Morgenstern
1992; Stark and Eid 1998).

There are a large number of publications that deal with
3D slope stability analysis. Duncan (1996) summarized the
main aspects of 24 publications dealing with limit equilib-
rium approaches. This list could now be extended to include
recent publications (e.g., Huang and Tsai 2000). All of these
methods divide the failure mass into a number of columns
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with vertical interfaces and use the conditions for static
equilibrium to find the factor of safety. Assumptions must
be introduced to render the problem statically determinate
and to facilitate the numerical procedures. A number of the
methods (Hungr et al. 1989; Huang and Tsai 2000) neglect
the vertical shear force components of the intercolumn force
and project the forces applied on a column in the vertical di-
rection. The normal force of the column base can then be
readily determined without the knowledge of the unknown
intercolumn forces. Force or moment equilibrium equations
are subsequently established to calculate the factor of safety.
This kind of treatment can be traced back to 2D analysis,
where Bishop (1955) established his simplified method for
circular slip surfaces (although complete satisfaction of
force equilibrium conditions for an individual slice or for the
whole failure mass were not considered). Hungr et al. (1989)
discussed the limitations involved in their 3D Bishop and
simplified Janbu methods. These do not satisfy the overall
force equilibrium condition in the lateral direction. Huang
and Tsai (2000) employ moment equilibrium conditions
around two co-ordinate axes. However, since the force equi-
librium equations are not fully satisfied in their method, the
moment equilibrium conditions are dependent upon the loca-
tion of the axes around which the moments are calculated.
Their method is therefore only applicable to spherical slip
surfaces in which the location of the center is known and
allows the establishment of the moment equilibrium condi-
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tions. Our profession accepts these simplifications on the ol S
basis that they have be validated through practical applica- 8 % S
. . = S
tion and more rigorous methods. 2| g E
Lam and Fredlund (1993) established a 3D method based E=Y g &
on the complete satisfaction of force equilibrium conditions e 2
for each column. Their governing equations of force and S| 5 88 8 2,3 gg
moment equilibrium for the whole failure mass involve a B|53E8 § =S x5
large number of unknown intercolumn forces. Convergence BI8EE E 3523
issues can be of concern as essentially “trial and error Sl&as & 828
numerical procedures are used to solve these large-scale,
nonlinear equations. g o % s a0
Table 1 summarizes the assumptions involved in some 2 % wlEZR R R R
representative 3D methods. —ce588
As a complimentary approach, a 3D stability analysis g g°s = c oo o ooe
based on the upper bound theorem of plasticity has been S g g £ 5 ~Zzzz zZ zZzZZ
developed (Michalowski 1980; Chen et al. 2001a, b). It is & 5 5 23
theoretically more rigorous than various simplified limit £ 53329 c oo o o2
e . S > o g2 0 o 2
equilibrium methods. However, it includes a procedure for © oo IO =|2Zzz Zz Z»rZ
finding the critical failure mode that is composed of a slip .
surface and a series of inclined interfaces of blocks or col- 23 coo o %08
umns. The numerical optimization algorithm involves a large o = = SR el b
number of degrees of freedom, resulting in a challenging S5 2 2 E
mathematical endeavor. Solutions higher than the accurate T e & P I
values may occasionally be obtained if the numerical proce- §E. 8 S=Es 2 SES|e
dure terminates prematurely. The limit equilibrium methods, § = g £ :
which approach the accurate solution from the lower bound ZE 5 —g k=
N = 7 ) 7] @ 78 I
(Chen 1999), can be coupled w1.th the upper bound methods 3 g § S Ll2eg 2 222 g
and hopefully, bracket the solution into a small range. g
This paper presents a simplified 3D limit equilibrium 8 g @ g g
method based on the assumption of parallel intercolumn 8 T X = £ =
forces on row-interfaces, an approach that has been widely 5 £ ~leed o s @E|s
i i P L 2|z 2Z —3Ez7z|%
accepted in the 2D area (Spencer 1967). This 3D method < E 2 s 2 g
renders more satisfied equilibrium equations and freedom in = = I 8 g
. . . . = [ ] S g g
the shape of the slip surface. It requires relatively simple nu- 1 & 3 2 = &g =
merical procedures (with demonstrated high efficiency) to 3 | = £ s/ 8 8 = . 8
obtain convergence. The computation results using this £ 2 g - %"ED Spe° é”%”%” El
method are justified by other simplified approaches as well g1z - S £ = i;
as the 3D upper bound method proposed by Chen et al. 2 ° ° = IS 2
(2001a, b). = g @ - £ _ g
The proposed 3D limit equilibrium method 2z |5 T T ; f:: 2
= Q <
2 e 2 8=
Assumptions made for the internal shear forces on a EN B E % é = g
column 21¢ - Alebeh O 5 e D
. . g . s} = < = = =8 E=!
As with other 3D limit equilibrium methods, the failure i K © Sl S
mass is divided into a number of columns with vertical inter- ale - o
faces (Fig. 1). The conventional definition for factor of 2 |2 EE ‘f‘é
safety F reduces the available shear strength parameters ¢’ 212 S T &
and ¢’ by the following equations to bring the slope to a lim- glE 2.8 >
iting state. =N I T o9l b oebod  oh &b =
7] S 3|0 0 0 ) ) g g b5y
&= 3 - ]
d z g & |s
q)/ - o 2 g S 3
,  tan Z 5= - =3 =
21 tang. = 2 €z z3 |2
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£ S E 23 |2
Throughout this paper, the subscript “e” is used to indicate 2 ) ésj B = ;
the variables that are determined based on the reduced shear < ) — g % ?g 2
strength parameters ¢, and @,. - 2l w § Eog 3
The following assumptions are made in the establishment % = %0 %DE E g § 2 S
of the force and moment equilibrium equations (Fig. 2). = <IZEZTN U AEE
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Fig. 1. Discretization of a failure mass.

Neutral plane

Single column

(1) The horizontal shear forces, H, on the row-interfaces
(ABFE and DCGH in Fig. 2a) are neglected, i.e., the
intercolumn forces with inclinations of B to the x-axis and
designated G, are assumed to be parallel to the xoy plane. It
is further assumed that B is constant for all columns. This
treatment is therefore equivalent to that used in Spencer’s
(1967) method in two dimensions. Ignoring the horizontal
components of shear forces on the row-interfaces is a com-
mon assumption made to almost all of the 3D methods
appearing in the literature (refer to Table 1).

(2) Shear forces, P and V, applied to the column-interfaces
(ADHE and BCGF in Fig. 2) are neglected. Similar assump-
tions have been made by other researchers (e.g., Hungr et al.
1989; Huang and Tsai 2000).

(3) The shear force applied to any column base, 7, is as-
sumed to be inclined at an angle of p measured from the xoy
plane to the positive z-axis. For prisms in any column direc-
tion (i.e., those with constant z values), p is taken to be con-
stant. In the z-direction, p varies according to the following
two modes:

(a) Mode I: the direction of the shear forces on all of the
column bases is the same, i.e., Ip| = x = constant (Fig. 3a).

(b) Mode II: the basal shear forces on the left and right
side of the central xoy plane take opposite directions and
vary linearly with respect to the z-axis, i.e., (Fig. 3b),

z20
z<0

Pr = KZ
pL =-MKz

The subscripts R and L indicate the right and left sides of
the xoy plane, respectively, | is a coefficient of asymmetry,
and ¥ is an unknown involved in the force and moment equi-
librium equations. It determines the magnitude of p for each
column after the solution is obtained.

The direction cosines of the shear force 7, designated m,,
m,, m,, can be readily determined by the following equa-
tions:

(3]

X y Z

m2+m2+m? =1
(4]

man,+mn,+mn, =0

and

[5] m, =sinp
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where n,, ny, n, are direction cosines of the normal to the
column base. There are two solutions to m,. The negative so-
lution should be rejected.

The force and moment equilibrium equations and their
solutions

The procedures for calculating the factor of safety are as
follows (refer to Fig. 4).

(1) Determine the normal force N; applied to each
column base

By projecting all of the forces in the direction S” applied
to each column (that is perpendicular to the intercolumn
forces G), it is possible to calculate the normal force N;
applied to each column base. As G; and G, ;, applied on the
front and rear row-interfaces, respectively, are assumed to be
parallel to the xoy plane and inclined at a constant angle of
B, they do not appear in the projection. The shear forces on
the column-interfaces (ADHE and BCGF in Fig. 2), which
have been assumed to be zero, also do not appear. This
results in the following equation which involves only one
unknown, the normal force N;:

[6] W, cosB+ N, (-n, sinf+n, cosP)
+ T;(=m, sinf+m, cos) =0

The shear force, T}, on the column base can be determined
by application of Mohr—Coloumb’s failure criterion

[71 T, =(N, —uA)tand, + A

where u is the pore pressure at the column base (of area A;)

and W; is the weight of the column. The normal force N;

applied to the column base can be consequently obtained
from
81 N;=

W; cos B+ (uA; tan ¢, — &, A)) (=m, sin+m , cosP)

—n, sinP + n, cos B+ tan ¢, (—m, sin +m , cosp)

(2) Establish the force equilibrium equation in the other
two co-ordinate axes and the moment equilibrium
equation about the z-axis

By projecting the forces applied to the entire failure mass
in the direction S (i.e., in the G direction), we obtain

[9] 8§ =2X[N,(n, cosB+n,sinf),
+T;(m, cosB+m, sinf); =W, sinf§] =0
The overall force equilibrium in the z-direction requires
[10] Z=XWN;-n.+T;,-m)=0

Establishing the overall moment equilibrium equation
about the z-axis leads to

[11] M =X[-Wx-N; n,y
+N;-ny-x=T;-my-y+T;-m, -x]=0

where x, y, z are co-ordinate values of the center of a column
base. Since the force equilibrium conditions for the three
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Fig. 2. Forces applied on a prism (a) before introducing the assumptions and (b) assumptions made for the shear forces on the prism.

(a) H G
|
|
E | F
l L’y,i+1(;
| H1+]__L/ X,i+]
v
5l Py
Q, i3] i1
el . r_
/l, i Vi+1
Gilg
TR
/
/ Tz7éf /O/" X
/ T,y N
> s
A B N z

co-ordinate axes are all satisfied, eq. [11] can be established
around any arbitrary z- axis.

Equations [9], [10], and [11] are controlling equations for
solving for the factor of safety. A simple way of justifying
these equations is by summing up all of the dot products
made by the forces and their projection axis. The direction
cosines for the individual vectors are: (cosf, sinf3, 0) for S”;
0, -1, 0) for W; (n,, n,, n)) for N; (m,, m, m,) for T; and
(—sinp, cosP, 0) for S."

A

(3) Solve for the factor of safety using the
Newton—Raphson method

There are three unknowns, namely F, B, and p (or k if
mode II for the distribution function of p is used) involved in
egs. [9], [10], and [11]. They can be obtained by application
of the Newton—Raphson method. Assuming a set of initial
guesses F, By, and py normally gives nonzero values of AS,
AM, and AZ from eqgs. [9], [10], and [11]. The next set of the
unknowns, represented as Fy, B; and p;, will make AS, AM,
and AZ closer to zero if they are obtained by the following
equations (i = 0, at present):

[12]
K
(131 M8 =Bu-Bi=-

K
Ap =Py —P; =_5

[14]

where

(b) H G
I Gy
| /x-direction
£ (" /BL”
| ,"\/ i
v
| 4t
|
Qi I I I E— Qi+1
|
|
C vy
o, - X
z

o 95 oS
OF Jdf dp
[15] p_|9M oM IM]|
oF Jdf dp
oz oz oz
oOF Jdf Jp
as B80S
B Ip
[16] Kp =|AM oM M|
JPp  Ip
sz %9
Pp  Ip
B g O
oF op
Ky =My M
oF op
o, o
oF ap
s s,
oF Jp
oF  Jp
7L,
oF Jp

The iteration terminates when the absolute values of AF,

AP, and Ap obtained from egs. [12], [13], and [14] are all
less than an allowable limit, usually taken as 0.001 (B and p
are in radians).
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Fig. 3. Assumption made for the distribution of r: (a) mode I,
(b) mode II.

(a) o

\p\ =K = const

(b)

—
P =—mKz

Conditions of physical admissibility

In 2D analysis, the solution associated with a certain
mode of assumption for the interslice forces should be
subjected to the restriction of physical admissibility
(Morgenstern and Price 1965; Chen and Morgenstern 1983).
In the 3D analysis, since the intercolumn forces usually are
not fully resolved, only the condition where there is no ten-
sion on the column bases is imposed, i.e.,

[17] N, —uA; 20

lllustrative examples

Example 1: Zhang’s (1988) example problem of an
ellipsoidal spherical slip surface

The two example problems presented by Zhang (1988) are
shown in Fig. 5. These problems have been re-evaluated by a
number of authors as part of the validation process for their
new 3D analysis methods (Lam and Fredlund 1993; Huang
and Tsai 2000). Chen et al. (2001a) used their upper bound
method to analyze the circular slip surface at the central xoy
plane. They obtained a factor of safety of F = 2.262. This
can be compared to Zhang’s solution of F = 2.122.
Re-analysis using the proposed limit equilibrium method re-
sults in F' = 2.187.

For this symmetrical problem, the slip surface is a circle
at the central xoy plane, but is ellipsoidal in the z-axis direc-
tion. Using the mode I distribution function for p depicted in
Fig. 3a, the factor of safety can be obtained using the itera-
tion procedure listed in Table 2. It can be seen that an initial
input for F, B, and p of 2.284, 5.0°, and 5.0°, respectively,
results in a converged solution of F = 2.187. This is reason-
ably close to Zhang’s solution of F = 2.122. The unbalanced
forces and moments are seen to decrease rapidly and by the
third iteration are close to zero. The solution for p is zero, as
would be anticipated for a problem with a symmetrical fail-
ure surface. A subsequent calculation using the mode II dis-
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Fig. 4. The force and moment equilibrium on S".

tribution function for p (refer to Fig. 3b) withm = 1 gave a
solution of F' = 2.188.

A further example, which includes a plane as part of the
slip surface, is shown as case 2 in Fig. 5. This example, from
Zhang (1988), has also been re-evaluated by a number of
authors. The results obtained by the proposed method, com-
pared to those provided by other researchers are listed in Ta-
ble 3. The inclination of row interfaces for the critical failure
mode, assessed by the upper bound method (Chen et al.
2001), is shown in Fig. 6. The factor of safety of F = 1.717
obtained for this critical mode is slightly higher than that ob-
tained by others. However, in general, the factors of safety
obtained for this problem using different approaches are in
reasonably close agreement. As with the previous example,
rapid convergence was obtained using this limit equilibrium
method.

As commented on by Lam and Fredlund (1993), the two
example cases shown in Fig. 5 are extensions of the 2D ex-
amples presented by Fredlund and Krahn (1977). To further
validate this 3D method, the plain strain simplifications of
cases 1 and 2 have been evaluated. The test examples consist
of nine identical cross sections at 10 m spacing. The factors
of safety obtained by the plain strain 3D method are 2.108
and 1.384 for cases 1 and 2, respectively, compared with
2.073 and 1.373 obtained by Fredlund and Krahn using
Spencer’s method. The intercolumn force inclinations, 3, ob-
tained from Fredlund and Krahn’s 2D and 3D methods were
also very similar. For case 1, the values of [ for the 2D and
3D analyses were 14.81 and 14.87°, respectively, while for
case 2 they were 10.49 and 10.13°, respectively.

Example 2: wedge failure analysis

Stability analyses of wedge failures in rock masses using
the limit equilibrium method are illustrated in many refer-
ence books (e.g., Hoek and Bray 1977). The limitations of
this simplistic approach include the assumption of uniform
material properties and the assumed direction of the shear
forces (parallel to the line of intersection of the two failure

© 2003 NRC Canada
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Fig. 5. Zhang’s example, case 1: an ellipsoid sphere slip surface; case 2: the slip surface with a composite shape containing a weak

plane.

— 20¢m>
CASEI1.CIRCULAR:
SLIDE SURFACE y =188 kKN/m’ 5
¢'=20°
CASE2.NONCIRCULAR =29 kKN/m2
WEAK LAYER(c=0, $=10°) —{10
—s
L 1 1 1 1 0
S0¢m) 40 30 20 10 0
Table 2. The iteration process for Zhang’s example, case 1 in Fig. 5.
Unbalanced Unbalanced Unbalanced
Iteration F B () p force, S (kN) moment, M (kN-m) force, Z (kN)
0 2.284 5.0 5.0 -9166.1 98 701.9 6727.4
1 2.164 12.42 -0.25 -391.9 23 620.0 -351.6
2 2.187 14.85 0 12.9 165.0 -2.7
3 2.187 14.87 0 0.5 -0.2 0.3

Table 3. Comparisons of the results from various authors for Zhang’s example, case 2 in

Fig. 5.

Hungr et Lam and Huang and Chen et al. Present
Zhang (1988) al. (1989) Fredlund (1993) Tsai (2000) (2001a) study
1.553 1.620 1.603 1.658 1.717 1.64

surfaces). The 3D method presented in this paper can be
used to analyze more complex wedge failure problems.

Two examples involving simple geometry and material
properties have been analyzed using the new 3D method.
The parameters defining the problems are listed in Table 4.
The parameters have been chosen so that the solution from
the 3D method can be compared to those obtained from the
traditional approach. Figure 7 shows the symmetric wedge
used in the 3D analysis. The 3D analysis resulted in a factor
of safety of F = 1.556, which is the same as that obtained
from the traditional analysis. For the mode I distribution
function of p, p converged to zero. Taking 1 as unity and
adopting the mode II distribution of p also gave a factor of
safety of 1.556 and a converged ¥ in eq. [3] of zero.

Figure 8 depicts an asymmetric wedge; geometric and ma-
terial parameters are listed in Table 4. A solution could not
be achieved using the mode I distribution for p. The mode II
distribution (using various values for 1) resulted in factors
of safety (see Table 5) varying from 1.597 to 1.615. Tradi-
tional analysis results in F = 1.640. This example shows that
by taking different values for m, consistent values of F are
obtained, as long as the condition of physical admissibility
as specified by eq. [17] is met.

Fig. 6. Zhang’s example of case 2, the critical inclination of
row-interfaces in the upper bound solution.

y

L,

Examples of practical applications

Reinforcement of a high slope within Quaternary
deposit

Figure 9 shows a Quaternary deposit “hanging” over an
expected reservoir created by the 300 m high Xiao Wan arch
dam that is currently being built in Yunnan Province, China.
This potentially unstable deposit is 400 m high with a total
volume of 5.0 x10° m®. Excavation of the arch dam founda-
tion will cut away part of the toe of the slope. The high mag-
nitude of seismicity further adds to concerns over long-term
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Table 4. Parameters for wedge examples.

Symmetric example Asymmetric example

Planes Dip (°) Dip angle (°) Dip (°) Dip angle (°)
Left 115 45 120 40

Right 245 45 240 60

Surface 180 10 180 0

Slope 180 60 180 60

Note: Both left and right failure planes take the same shear strength
parameters. For the symmetric case, ¢’ = 0.02 MPa, ¢’ = 20°; and for the
asymmetric case, ¢’ = 0.05 MPa, ¢’ = 30°.

Fig. 7. Example of a symmetric wedge.

Left plan
£
[N
@ .
3 Right plan
T

stability. Detailed geological exploration has identified the
isometric contour of the deposit—bedrock interface where a
thick clay seam was discovered, forming a “spoon shaped”
potential slip surface (Fig. 10). In addition to the drainage
tunnels to be built in the bedrock, reinforcement work is be-
lieved to be necessary. One alternative involves a series of
prestressed cables, each 3000 kN in capacity and 180 m in
length, which are bounded around the slope to “hold” the
soil mass. Both ends of the cables are embedded in the rock
of the upstream and downstream gullies (refer to Fig. 9).
The aim of the 3D stability analysis is to determine the in-
crease in factor of safety resulting from implementation of
the proposed cable layout. This layout involves cables at
1 m spacing, between elevations of 1150 and 1300 m. The
supporting forces of the cables can be readily determined by
applying the design methods for cable bridges. The calcula-
tions resulted in a total load supplied by the cable system of
1.37 x10° kN in essentially the horizontal direction.

The failure mass is approximated by six cross sections in
the pre-excavation case and by five post-excavation. In the
post-excavation case, cross section 2 is removed and sec-
tions 0 and 1 are partly cut out at the toe (refer to Fig. 9).
Comprehensive shear strength parameters of ¢'= 35° and ¢ =
0.05 MPa have been assumed for the slip surface. Although
most of the slip surface will coincide with the clay seam at
the deposit—bedrock interface, optimization is needed to de-
termine the critical locations of the points defining the inter-
ception of the slip surface with the slope surface at the
crown and toe. Figure 11 shows the critical slip surface for
the excavation case for each cross section obtained through
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Fig. 8. Example of an asymmetric wedge.

100m
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Table 5. Factors of safety associated with different values of n
in mode II for the example of an asymmetric wedge.

n 1.2 1.1 1.0 0.9 0.8 0.7 0.6
K 0.750  0.770  0.795 0.821 0.849 0.880 0.991
F 1.615 1612 1.611 1.608 1.605 1.601 1.597

optimization. The interception points are marked by their re-
spective elevations.

Both limit equilibrium and upper bound methods have
been used to evaluate the factors of safety. Table 6 shows the
results for various operational cases. It was found that for
the upper bound calculation, the degrees of freedom num-
bered as high as 16 if the inclinations of the interfaces be-
tween the columns were included. This brought considerable
difficulties in finding the global minimum of factor of safety.
An approximate approach, where no effort was made to find
the critical inclinations of the interfaces, was adopted in-
stead. The interfaces were assumed to be vertical and have
relatively low shear strength parameters of ¢’= 10° and ¢ =
0.04 MPa. This approach to some extent, compensates for
the higher factor of safety obtained by not optimizing the in-
terface inclinations. The results listed in Table 6 show that
excavation of the toe of the Quaternary deposit reduces the
factor of safety by 7%. The combination of the various stabi-
lizing measures increases the factors of safety by 15-20%
and results in a reduction of about 10% if obtained under
earthquake loading.

It was interesting to find that even for this problem, which
exhibits marked asymmetry in the shape of the failure mass,
there was no substantial difference among the more rigorous
3D methods described in this paper and those obtained using
Jambu’s simplified 3D method (Hungr et al. 1989). Also
worth noting are the factors of safety obtained by the
quasi-3D method using the weighted-average approach,
which are in most cases lower than the more rigorous 3D
methods by 0.10. In this example, this difference means sev-
eral meganewtons of supporting force that can be saved if
the 3D methods are employed.
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Fig. 9. The Quaternary deposit of the Xiao Wan Project and the proposed reinforcement by prestressed cables.

\

|
J

$

7

{

\

3

//‘ -
R

|

Excavation of the
Arch dam foundation

i

AN\

The Quaternary Deposit

Cross section

3
%7

NIEf € F .

/ ?QZI\

'\ \\ +2

ayout of the prestressed cables
2 \
¢ /f‘i"/

Table 6. Evaluation of factors of safety upon various operational cases.

FOS by various methods

Upper bound (Chen Limit equilibrium Weighted Simplified Janbu

No. Case ry et al. 2001a) (this paper) average (Hungr et al. 1989)
1 Original topography 0.15 1.154 1.138 1.042 1.089

2 After excavation 0.15 1.087 1.063 1.014 1.02

3 2 + drainage 0.05 1.239 1.216 1.160 1.174

4 3 + reinforcing cables 0.05 1.343 1.357 1.229 1.252

5 4 + earthquake 0.05 1.198 1.180 0.998 1.117

Note: r,, pore pressure coefficient.

Fig. 10. Sketches for 3D calculations for the high Quaternary
deposit after excavation: (a) isometric view; (b) plan view.
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Discussions and concluding remarks

From Table 1 it can be seen that all of the existing limit
equilibrium methods, except Lam and Fredlund’s, fail to sat-
isfy the force equilibrium condition in the lateral direction
(i.e., the z-axis). This has resulted in concern over the accu-
racy of the solution (Hungr et al. 1989) and the limitations
to the slip surface, such as symmetrical (Chen and Chameau
1983), partly spherical (Huang and Tsai 2000), or logarith-
mic (Leshchinsky et al. 1986). The main innovation of the
proposed method is the satisfaction of overall force equilib-
rium conditions in all three directions. This method is there-
fore most useful for slip surfaces with marked asymmetry in
the lateral direction. Although different 3D methods appear
to give virtually the same results for the examples shown in
this paper, much more practical applications will be needed
to fully understand the applicability and limitations of these
methods.

Another feature of this method is its simplicity and
numerical tractability. Compared to Spencer’s 2D method,
only one additional equation for equilibrium in the z-direction
has been added. The Newton—Raphson iteration procedure
has enabled very rapid convergence for all of the examples
shown in this paper.
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Fig. 11. Cross sections of the Quaternary deposit example (refer to Fig. 10).
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However, the method still represents a simplified ap-
proach as the static equilibrium condition is not fully satis-
fied for each column, and some shear components of the
intercolumn forces are neglected. Its usefulness will be justi-
fied in its practical applications and by the complimentary
use of other more rigorous methods, such as the upper
bound method (Michalowski 1980; Chen et al. 2001a).

To facilitate the application of this method, source pro-
grams in FORTRAN language have been provided in the
web site: www.geoeng.iwhr.com/geoeng/download.htm.
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