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Abstract

The second part of this paper provides the numerical procedures that implement the three-dimensional upper-bound slope
stability analysis method described in Part I. A three-dimensional failure surface is generated by elliptical lines based on the slip

surface in the neutral plane and extended in the z direction. This failure surface is mathematically represented by a series of variables
including the co-ordinates of the nodal points that define the slip surface at the neutral plane, the inclinations of the row-to-row
interfaces and the coefficients that define the ratio of the long axis over the low one of the elliptic. A method of optimisation is

followed in order to find a set of these variables that offers the minimum factor of safety. A computer program EMU-3D is coded to
perform the calculation for practical problems. Applications and extensions of the method presented in this paper include a case
study of the Tianshenqiao Landslide, the stability analysis of the right abutment of the Xiaowan arch dam, and the portal of the

Hongjiadu hydropower project. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The three-dimensional (3D) slope stability analysis
method proposed in Part I of this paper allows a quick
and simple method of determining the factor of safety
for a specified slip surface and interface inclinations.
However, a practicable and useful 3D method employ-
ing this theory requires solutions to the following related
numerical problems:

* Mathematical modelling of failure surfaces and inter-
faces in three dimensions. The failure surface of a
natural landslide usually exhibits a complex shape,

often controlled by geological features. Failure
surfaces are not necessarily spherical or log-spiral,
as has been employed by some researchers [1,2] but
may involve several planar geological structures as
part of the slip surface or interfaces. Their mathe-
matical description must offer great flexibility for
simulating a generalised failure mode but must
involve as few controlling parameters as possible so
as to reduce the computational effort when searching
for the critical surface and minimum factor of safety.
Dividing a failure mass into a series of prisms with
inclined interfaces and adopting an appropriate
numbering system to identify each part of the slip
surface and interfaces will complicate the process
even further. In a typical application, the discretisa-
tion of three-dimensional topography and geometry
may need to be carried out several thousand times
during the optimisation process and therefore any
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numbering system must be unique and logical so that
it can be automatically generated by the computer
program.

* The optimisation methods employed in searching for
the critical slip surface. The upper bound theorem
upon which the method is based requires calculation
of factors of safety for many possible failure modes
until the minimum factor of safety is obtained.
Failure to do so will cause an overestimation of the
factor of safety. This can be a difficult process even
with two-dimensional problems. In three dimensions,
the degrees of freedom which need to be optimised
increase considerably, thereby significantly increasing
the complexity of obtaining the optimum solution.
The development and/or application of innovative
optimisation methods require special consideration in
3D slope stability analyses.

* Graphics-based presentation of input and output.
Interpretation and quantification of the topographic
and geological information and presentation of
the results of the analysis is a vital part of the
development of the method. Lam and Fredlund [3]
introduced the ‘Kriging’ technique. The authors’
experience has shown that processing the information
cross-section by cross-section is a very convenient
and reliable way of interpreting the input and output.
It allows most of the previous two-dimensional work
[4], which has been considerably debugged and
updated, to be transferred directly into a 3D
program. Treating a 3D profile by a series of cross-
sections also enables application of most commer-
cially available 3D graphics programs, such as
AUTO CAD, and 3D Studio. The application of
these programs considerably reduces the work
required to produce meaningful, high quality 3D
graphics images.

The authors believe that these problems must be
solved through continued application of the method to
practical problems. Meanwhile, by applying the method
to areas where conventional two-dimensional (2D)
methods are inappropriate, the attributes of the 3D
method will be illustrated and hence lead to more
widespread use. It has been found that rock mechanics
and geomechanical engineering offer many potential
areas for these extensions. This paper describes the
solutions to the numerical problems as well as the
applications and extensions of the method to several
large-scale hydropower projects that involve possible
instability of arch dam abutments and tunnel portals.

2. The generalised three-dimensional slip surface

A 3D slip surface and its related failure mode is
developed by the following two types of discretisation:

Type one: The slip surface in each of the cross-sections
(i.e. ‘z equals constant’ section) is specified in a similar
manner to that of the 2D approach [4]. A number of
nodal points with co-ordinates (xi, yi) are connected by
either straight lines or smooth curves. The sliding mass
at the neutral plane, cross-section 0, is further divided
into a series of slices with interfaces inclined at an angle
di, (measured from the positive y-axis to the positive
x-axis). These are extended in the z direction perpendi-
cular to the x2y plane, cutting the failure mass into
prisms. The extended inclined planes are referred to as
row-to-row interfaces. The co-ordinate values for top
and bottom points of these interfaces are designated
ðx0u; y

0
uÞ and ðx0l; y

0
l Þ, and are determined by linear

interpolation between the co-ordinates of the two
adjacent nodal points, xi and yi (Fig. 1). The ‘z equals
constant’ cross-sections form column-to-column inter-
faces. This type of discretisation is suitable for cases
where the slip surface is well defined such as in the
back analysis of a landslide or in rock slopes in
which the structural discontinuities clearly define the
failure mode.

Type two: The slip surface is defined by an ellipsoid
based on the information of cross-section 0. As with
type one, the slip surface on the neutral plane is
generated by a series of nodal points with intermediate
slices determined by interpolation (Fig. 1(a)). The sliding
mass at this section is subdivided by a series of inclined
interfaces of length, H. Each interface extends in the z
direction to form row-to-row interfaces that are perpen-
dicular to the x2y plane, as shown by cross-section
A–A0 in Fig. 1(b). The length of the corresponding
interface, h, at the cross-section numbered j, with a

Fig. 1. Developing a generalised three-dimensional slip surface

based on the information of the cross-section. (a) The neutral plane;

(b) cross-section A–A0, a typical row-to-row interface.
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co-ordinate value of z, is given by the following equation:

h2

H2
þ

z2

zðH þ BÞ½ �2
¼ 1: ð1Þ

The two parameters, z and B, are included in Eq. (1)
to offer a generalised shape of the slip surface and will be
explained below. Based on the value of h determined by
Eq. (1), the co-ordinates of the points on the slip surface
of the cross-section j, represented as ðx j

l; y
j
l Þ, can be

defined as (Fig. 2)

x j
l

y j
l

( )
¼

x0u � h sin di
y0u � h cos di

( )
: ð2Þ

Note that at both ends of the slip surface on the neutral
plane, H ¼ 0. Therefore, we have h ¼ 0 at the crown
and toe.
In Eq. (1) z is a coefficient that defines the ratio of the

lengths of the major to minor axis of the ellipsoid on the
row-to-row cross-section (Fig. 1(b)). If z is unity, the slip
surface on this cross-section is circular. For each nodal
point that defines the slip surface at cross-section 0, a
value of zi is specified. The value of zi for each interface
is determined by interpolation, in a similar manner to xi,
yi and di. The ellipsoid intersects the slope surface at
each row-to-row cross-section with a longer axis zmax
(Fig. 1(b)) which is determined by the equation

zmax ¼ zðH þ BÞ: ð3Þ

Some slope stability problems require that the slip
surface have a specified width at the crown or/and toe.
For example, bearing capacity problems require the
slip surface to take a specified length at the crown
to accommodate the surface load (Fig. 3(a)). The portal
of an underground opening always exhibits a cut with a
specified width at the toe of the slope (Fig. 3(b)). B is a
parameter that allows the slip surface to take a specified
length in the z direction at the crown and toe. Since the
value of H at the crown or toe is zero, then zmax ¼ zB,
which is non-zero if both z and B are not equal to zero.
For instance, to define a slip surface that has a length
of 2B0 at the crown, values of z ¼ 1 and B ¼ B0 are
used. By specifying z ¼ 0 for the nodal point at the toe,
the slip surface diminishes at the toe. Fig. 3(a) shows
a sketch depicting this mode for a bearing capacity
problem. On the other hand, taking z ¼ 1 and B ¼ B0 at
the toe will result in a potential failure surface of a
tunnel portal as shown in Fig. 3(b).

For both types of the discretisation mode, the
‘z=constant’ cross-sections serve as input for geometry
of the slope as well as the column-to-column interfaces.
They are parallel to the x2y plane.

3. Search for the critical failure mode

3.1. Variables involved in the optimisation process

The factor of safety for a slip surface defined using
Eq. (1) can be expressed as a function of a set of
variables related to cross-section 0.

F ¼ FðwÞ; ð4Þ

where

w ¼ w1; w2; w3; . . . ; wn
� �

¼ ðx1; y1; x2; y2; . . . ;xm; ym;

d1; d2; . . . ; dm; z1; z2; . . . ; zm; oÞ: ð5Þ

The principle of the upper bound method requires the
determination of the minimum value of F associated
with all possible variables contained on the right-hand
side of Eq. (4). At present, the column-to-column
interfaces are only allowed to tilt at the same angle o
(defined by Eq. (27) in Part I of this paper) and only

Fig. 2. The slip surface developed by a partly elliptical sphere on a

‘z=constant’ cross-section.

Fig. 3. A sketch of a failure mass created by the discretisation mode

type two. (a) The bearing capacity problem; (b) a tunnel portal

excavation.
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after an initial estimate is made using o=0. This means
that o is not involved in the optimisation process.
Some of the variables in Eq. (5) may be fixed due to

the particular features of the problem concerned. For
example, di will be fixed if the interfaces represent a set
of joints of a rock slope. In the back analysis of a slope,
since the location of the slip surface is known, xi and yi
are fixed. Hence, the only variable in Eq. (5) is di.
The discipline of non-linear programming permits a

minimum value of F to be obtained for a set of variables
that represent a critical failure mode. A number of
optimisation methods have been used in 2D slope
stability analyses. These can be in general divided into
deterministic and probabilistic approaches as will be
discussed in the subsequent sections. Both methods have
been used in the examples presented in this paper.

3.2. The deterministic optimisation methods

The deterministic methods are traditional approaches
in the area of non-linear programming. They can be in
turn divided into two categories:
(1) The pattern search method, which approaches the

minimum factor of safety by a well designed pattern that
compares the objective functions of different variable
combinations and determines the best directions to
approach a smaller objective function in the next step of
iteration. Methods of this kind include the Simplex
Method [5], Pattern Search Method [6] and Powell’s
Method [7] amongst others.
(2) The Newton methods, which theoretically obtain

the minimum by finding a set of variables that make all
the derivatives of the objective function zero. One
example of a method that falls into this category is the
Davidon–Fletcher–Powell method [8,9].
The applications of these search techniques to 2D

slope stability analyses are discussed extensively in the
technical literature [10–14]. In the authors’ experience,
although the Newton methods have a sound analytical
basis, they do not necessarily offer a more efficient way
to approach the solution. In many cases different
methods give essentially the same solutions and suffer
the same problems of failure in obtaining the global
minimum factor of safety.

3.3. The probabilistic optimisation methods

A new approach that employs probabilistic theory
offers great promise in overcoming the problems of
missing the global minima. The basic principle of
probabilistic optimisation methods is to compare factors
of safety of a large number of failure modes that are
generated by random numbers. In essence it appears
that the searcher is randomly walking in a domain that
contains the critical failure mode. The ever-developing
power of computers enables the searcher to evaluate the

factor of safety for tens of thousands of failure modes in
a few minutes. Consequently, in a probabilistic sense,
the searcher has a good chance of approaching the
global minimum purely due to the number of entries
into the search area.
For the problem of concern, the upper and lower

bound for each variable in Eq. (5), represented as wþi and
w�i , respectively, is set. A value of ith variable of w for the
jth random walk can be obtained and expressed by

w j
i ¼ w�i þ r j

i ðw
þ
i � w�i Þ; ð6Þ

where r j
i is a random number ranged in (0,1).

Chen [15] found that this random trial method allows
the searcher to evade local traps and hence to find the
approximate location of the global minimum. This
location is taken as the initial input of a subsequent
deterministic search that accurately locates the mini-
mum factor of safety. Greco [16] used a modified
random approach that directed the search direction in
a well-organised pattern. He claimed that an accu-
rate solution could be obtained without the help of
deterministic methods. Both works are concerned with
the conventional 2D method of vertical slices. It has
been found that difficulties in finding global minima are
more challenging when the problem involves slices, or
prisms, with non-vertical interfaces. More efficient and
powerful optimisation methods are needed.
Recently a technique called the ‘Simulated Annealing

Method’ has attracted significant attention [17,18]. This
method has effectively solved the well-known ‘travelling
salesman’ problem of finding the shortest cyclical
itinerary for a travelling salesman who must visit each
of N cities in turn. It is best explained through an
analogy of cooling and annealing of metal. Physical
annealing is a process in which a solid is heated until all
particles randomly arrange themselves in the liquid
state, followed by a slow cooling, spending a relatively
long time to reach the freezing point. At higher
temperature, the liquidised solid is allowed to move
freely and reach thermal equilibrium. As the tempera-
ture is decreased slowly rather than quickly, nature is
able to find the minimum energy level (freezing point).
The traditional optimisation methods are similar to the
quickly cooled process for a liquid metal, greedily
searching for the minima in the downhill direction from
the initial starting points. In a simulated annealing
process, if DF , defined as Fðwjþ1Þ � FðwjÞ in two
consecutive random trials, is less than zero, wj will be
replaced with wjþ1. However, if DF > 0; wjþ1 may still be
accepted based on an auxiliary judgement. A random
number ri is generated in (0,1) and compared to the
value exp½�DF=T �, where T is a specified parameter
simulating temperature. If ri5exp½�DF=T �, wj will be
replaced with wjþ1. The key issue is that the process is
undertaken slowly with a large number of random trials
so that the risk of mistakenly abolishing previous better
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random trials has been reduced to a minimum. Even if
this becomes a reality, there is a good chance that the
better trial will be rescued by subsequent searches. The
parameter T slowly controls this searching process and
plays the role of the temperature similar to that in
physical annealing.
The process starts from an initial temperature, T0,

which is set sufficiently high to allow uphill moves away
from local minimal [17]. However, too high a tempera-
ture will result in deteriorating random steps that lower
the efficiency. Recommendations for determining a
reasonable starting temperature are therefore required.
Before starting the simulated annealing, a number of
random walks in accepted variable space (generally 100
or more) are generated to determine the maximum and
minimum of the objective function, Fmax and Fmin. The
starting temperature T0 is then defined by

T0 ¼ Fmax � Fmin: ð7Þ

The temperature during the optimisation is reduced
by a damping function, that is,

Tk ¼ T0ðaT Þ
k; ð8Þ

where Tk is the value of temperature at the kth step of
cooling process. aT is referred to as the temperature
damping factor and falls in the range (0,1). aT is chosen
by trial and error [18]. m random steps are carried out in
the kth step .
Bohachevsky et al. [19] proposed that the direction of

a random step Dw ¼ wjþ1 � wj be determined by n
random numbers v ¼ ðv1; v2; . . . ; vnÞ from the uniform
distribution in (�1, 1), which is converted into direction
cosines u ¼ ðu1; u2; . . . ; unÞ,

ui ¼
viPn

i¼1 v
2
i

� �1=2: ð9Þ

To accommodate the irregularity of the optimisation
variable domain, positive constants ki (i ¼ 1; . . . ; n) are
proposed.

ki ¼
ðwþi � w�i Þ

maxfðwþ1 � w�1 Þ; . . . ; ðw
þ
i � w�i Þ; . . . ; ðwþn � w�n Þg

ði ¼ 1; 2; . . . ; nÞ: ð10Þ

The magnitude of random step Dr decreases with
temperature by a damping function, but remains
constant at the temperature step Tk. The magnitude of
random step Drk at Tk is defined as

Drk ¼ Dr0ðarÞ
k�1; ð11Þ

where ar is the random step damping factor in the range
(0,1). Dr0 is the initial value of the random step, which
is determined based on the properties of the objective
function and the desired accuracy and resolution.
Accordingly, the component of random step Drk in the

direction of each variable is defined as

Dwi ¼ kiDrkui i ¼ 1; 2; . . . ; n ð12Þ

Example 1. An example explaining the simulated
annealing process

Fig. 4(a) shows an example that has been documented
in [4]. The homogeneous and weightless slope with
c ¼ 750 kPa, f ¼ 378, w ¼ 358, d ¼ 248, is subjected to
an inclined uniform load of 6228 kPa (as shown in
Fig. 4(a)). Slip-line analysis results in a closed-form
solution, Fm ¼ 1:0 [20]. Although an accurate solution
has been obtained previously [4], it was only obtained
after a significant search effort with many unsuccessful
trials. The simulated annealing method provides an
alternative by which the local minima traps were
avoided.
The slip surface is divided into five nodal points, A, B,

C, D and E connected by smooth curves. Point A lies on
the slope surface and provides one degree of freedom,
the abscissa xA; the xi, yi and di associated with points
B, C and D are varied during optimisation; Point E is
fixed and no extra variable is provided. Therefore, in
this case, there are in total 10 degrees of freedom: xA,
xB, yB, dB, xC, yC, dC, xD, yD, dD, which represent a
kinematically admissible failure mode if constraint
conditions are satisfied. Each segment of the slip surface
is connected by two adjoining nodal points as shown
in Fig. 4(a). In the simulated annealing method the
following parameters were adopted: temperature damp-
ing factor aT ¼ 0:9, random damping factor, ar ¼ 0:98,
and the number of random walks mk ¼ 300. Based on
these selected parameters, 100 successful random steps
yielded the starting temperature T0. With the reductions
of temperature and step magnitude through a large
number of random steps the final solution was obtained.
Fig. 4(b) and (c) show the variation of factor of safety
in the process of optimisation based on the accepted
random steps of Dr0 ¼ 0:06 and 0.27, which led to the
minimum factors of safety of Fm ¼ 1:008 and 1.001,
respectively. It can be shown from Fig. 4(b) and (c) that
unlike the conventional deterministic methods, the
factors of safety sometimes increased during the process
of minimisation but eventually approached the critical
solution. The case Dr0 ¼ 0:06 was associated with T0 ¼
0:014 and a larger factor of safety Fm ¼ 1:008, compared
to the case Dr0 ¼ 0:27 which was associated with T0 ¼
0:12 and a more accurate result of Fm ¼ 1:001.

4. Applications of the 3D slope stability analysis method

Example 2. Stability analysis of the Power Plant Slope
of the Tianshengqiao II Project
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This example illustrates the application of the
computer program EMU-3D to a practical problem
involving generalised topography, layered cross-sections
and realistic ground water conditions.
The construction of the Tianshengqiao II Hydro-

power Plant resulted in an excavation of a 170m high
slope in a tertiary syncline formation consisting of
interbedded sandstone and claystone. A large ground
movement rate of 7.2mm per day was observed in
November 1986, following a 20m deep excavation that
daylighted a clay seam. The lateral borders of the
unstable rock mass were clearly identified by two gullies
that cut both sides of the slope. An extensive site
investigation using boreholes allowed the failure plane
to be identified as a clay seam that had formed on a
bedding plane of the syncline formation. Fig. 5 shows
the plan view of the geology. The boreholes also
indicated a ground water level, some 5m higher than
the clay seam.
As this is a typical back analysis problem in which

the slip surface is well defined, the failure mass was

discretised using the type one process described earlier.
The neutral plane was assumed to coincide with the axis
of the syncline and three cross-sections adopted for the
left side (z50) and five to the right (z > 0). Figs. 6 and 7
show the discretised failure mass in plan and the
isometric view of the failure mass, respectively. Fig. 8
depicts the individual cross-sections. The geotechnical
properties are described in Table 1. The factor of safety
obtained by EMU-3D was 0.945.
For comparison, Table 2 shows the factors of safety

of each cross-section assuming 2D conditions. The
weighted average of the factors of safety is 0.885.

5. Extensions of the 3D slope stability analysis method

5.1. Stability analysis for arch dam abutments

The abutments of arch dams are subjected to large
thrusts from the arch and generally require 3D analysis.
The potential failure mass is in many ways similar to a

Fig. 4. Example 1: (a) the initial and critical failure modes of an example with closed-form solution; (b) variation of factor of safety with the process

of optimisation for Dr0 ¼ 0:06; (c) variation of factor of safety with the process of optimisation for Dr0 ¼ 0:27.
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bearing capacity problem (Fig. 9(a)), except that it is
rotated through 908 and only half of the problem needs
to be considered. The surcharge acting on a footing in a
bearing capacity problem is equivalent to the thrust
acting on an abutment of a dam. The neutral plane for
an arch dam is located at the lowest elevation of the

abutment. The failure mass will diminish at a certain
elevation of the abutment depending on the value
specified for B in Eq. (1). In this particular case, a
larger value of B does not necessarily result in a lower
factor of safety since at higher elevations the thrust is
lower and applied in a favourable direction as far as

Fig. 5. The cross-sections that define the failure mass for example 2.

Z. Chen et al. / International Journal of Rock Mechanics & Mining Sciences 38 (2001) 379–397 385



stability is concerned. A critical value of B may exist
which gives the minimum value of F. This implies that
only that part of the abutment lower than a specific
elevation would slip under the application of the thrust.

Although there are many similarities to the bearing
capacity problem, stability analyses of arch dam abut-
ments involve a number of extra complexities that need
special attention.
Firstly, the bench of the arch dam is not a rectangle

and its location varies with elevation. A translation
process is needed to ensure that the co-ordinates of
the points produced by Eq. (1) are located correctly.
Secondly, the directions of the row-to-row and column-
to-column interfaces in the arch dam problem should
coincide with the orientation (and spacing) of the
geological discontinuities present within the rock
mass. This can be achieved by introducing a process
for rotating co-ordinates.

Example 3. Abutment stability of the Xiaowan Dam

Fig. 9 shows two typical horizontal cross-sections of
the Xiaowan arch dam. The dam is 300m high and
transfers extremely high pressures to both abutments.
The geology consists of granite with two joints striking
virtually north–south and east–west and dipping almost
vertically. It is quite convenient to align the co-ordinate
system with the vertical and upward z-axis. The x-axis is
aligned parallel to the river course but in the opposite
direction to that of the stream flow. The horizontal
cross-sections are ‘z=constant’ interfaces and contain
input information of the profile geometry and material
properties. The joint sets that strike east–west serve as
the row-to-row interfaces.
However, in addition to the two sets of vertically

dipping joints, there exists in the rock mass another set
of joints created as a result of relaxation during
formation of the river valley. This set of joints, which
is present on both left and right abutments, strikes
approximately parallel to the river (i.e. along the x-axis)
and dips into the river at an angle of 20–408. The
existence of this set of joints means that the abutment
can slip along the relaxation joints towards the river.
The 3D stability analysis should be based on a velocity
field that can accommodate movement in the negative
x direction, produced by the arch thrust and in the
positive y direction along the relaxation joints, caused
by gravity. The y2z plane is therefore rotated to create
a new co-ordinate system x2y02z0 such that all the
‘‘z0=constant’’ planes are parallel to the relaxation
planes as shown in Fig. 10. The input geometry and
the applied arch thrusts also need to be resolved into
the new co-ordinate system. Fig. 11 shows the
‘‘z0=constant’’ cross-sections based on the original
‘‘z=constant’’ cross-sections. Fig. 12 shows a front view
of the thrust force.
Isometric views of the initial and critical failure

modes are shown in Fig. 13(a) and (b), respectively.
The corresponding factors of safety are 4.02 and 3.61,
respectively. The value of B is 89m, which means that

Fig. 6. A plan for the Tainshengqiao landslide discretisation.

Fig. 7. The isometric view of the failure mass.
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the failure mass includes the part of the abutment
between the upper point of exit of the failure surface at
1170m elevation and the bottom at 1245m elevation.
The geotechnical parameters are listed in Table 3. It
should be emphasised that this analysis has been con-
ducted on the basis of traditional concrete dam design.
Such designs usually specify an allowable factor of
safety of 3.5 for arch dam abutments, with assumed
values of cohesion and friction angle based on contribu-
tions from both intact rock bridges and joints.
Table 4 lists the factors of safety for B ¼ 44, 63, 89

and 108m. These correspond to upper failure surface
exit points with elevations of 1090, 1130, 1170, and
1210m, respectively. As expected, it was found that
there exists a value of B which results in a minimum
factor of safety; i.e. B ¼ 89m corresponding to a failure
surface exit elevation of 1170m.

5.2. Slope stability analysis at a tunnel portal

It is widely understood that selecting a stable portal
is of vital importance in tunnel excavation. The
stability of a portal exhibits typical 3D features. Firstly,
cutting a vertical front face may cause instability
despite only a limited width of the slope toe being
excavated. Using the conventional 2D slope stability
analysis that assumes an infinite length of the front face
may be too conservative. Secondly, failure may take
place as the portal is further weakened during tunnel
excavation that results in the rock mass hanging on the
ceiling of the tunnel. Obviously, it is impossible to model
this failure process by 2D analysis. The following
example explains how modelling this process can be
made possible by the 3D approach described in this
paper.

Fig. 8. (a–i) Cross-sections of the Tainshengqiao landslide.
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Example 4. Portal stability analysis of the Hongjiadu
Hydropower Project, China

This project involves a 182m high rockfill dam, with
all of the water discharge facilities located in the left
limestone abutment. Unfortunately, the dip direction of
the bedding planes coincides with that of the abutment
slope (Fig. 14). Stability of the slope during excavation
of the portals of various water release tunnels has been
of serious concern.
Fig. 14 shows a geological cross-section of the flood

discharge tunnel. Investigation has identified several
weak seams that have developed along the bedding
planes. These seams will daylight when the front face

is excavated. The factor of safety along seam AA0

that daylights at elevation 1106.0m will be consider-
ably reduced if 2D analysis is employed since the
shear strength parameters of AA0 are very low. As a
result, it may be necessary to specify that significant
reinforcement be utilised in order to excavate the portal
safely.
However, the front face is only 9.4m wide. The slip

surface, in addition to AA0, must involve the side faces
that intercept the rock mass which has significantly
higher shear strength parameters. Therefore, the 3D
factor of safety of this failure mode may be somewhat
higher than that predicted from 2D analyses, thereby
reducing the requirement for reinforcement.

Fig. 8. Continued.
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Fig. 15 shows the critical slip surface obtained by a
global failure mode that takes AA0 as its basal failure
surface with its side faces intercepting the rock mass. In
the calculation, the shear strength parameters of the
weak plane AA0 are f ¼ 21:88 and c ¼ 50 kPa while
those for the rock mass are f ¼ 30:08 and c ¼ 500 kPa

(refer to Table 5). These values were derived using
the empirical criterion of Hoek and Brown [22]. The
rock mass has two sets of steeply dipping joints that
are adopted as the row-to-row and column-to-column
interfaces, in which the row-to-row interfaces have
slightly in-dipping angles of 108. In this case, the

Fig. 8. Continued.
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bedding plane AA0 that forms the basal plane of the
failure surface is constructed by connecting four nodal
points as shown in Fig. 16. Since AA0 is well defined, xi
and yi in Eq. (4) are all fixed. The values of di are also
fixed, being �108 to model the in-dipping joints. o is

taken as unity, representing a set of vertically dipping
joints. Only z of the four nodal points will be varied
during the optimisation process. The failure mode
represented by Eq. (1) was slightly modified to produce
a planar basal failure surface. The critical slip surface

Table 2

The factors of safety for individual cross-sections and their weighted

average

Number �3 �2 �1 0 1 2

F 0.630 0.909 1.204 0.997 0.883 0.795

Number 2 3 4 5 Weighted average

F 0.795 0.573 0.464 0.524 0.885

Table 1

Geotechnical parameters of the rock mass material for the Tian-

shengqiao Project

Front part Rear part

c (MPa) tan f g (g/cm3) c (MPa) tan f g (g/cm3)

Weak seam 0.01 0.14 2.25 0.015 0.17 2.25

Rock mass 0.2 0.26 2.3 0.02 0.26 2.3

Fig. 9. Typical horizontal cross-sections of the Xiaowan arch dam at: (a) elevation 1210m and (b) elevation 1010m.
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shown in Fig. 15 is plotted based on the right partial
prisms. The view shown is that from upstream to
downstream. The minimum factor of safety associated
with this critical slip surface is 2.890, which is reasonably
high. In this case if a 2D approach is employed, the
factor of safety is only 1.096, as shown in Fig. 16.
In view of the large factor of safety associated with

the 3D planar failure surface mode, it was suspected that

the conventional slope stability analysis using a curved
slip surface might still control the stability of the slope
[21]. Figs. 17 and 18 compare the critical curved slip
surfaces obtained from 2D and 3D approaches. The slip
surface at the neutral plane, as well as that in 2D
analysis, was created by connecting three nodal points,
shown as A, B, C in Fig. 17, using a spline function. It
can been seen that by considering the 3D effects, the

Fig. 10. Rotation of the y2z plane to bring the ‘z=constant’ planes

parallel to the relaxation joints.

Fig. 11. The ‘z0=constant’ cross-sections after rotation of the original

‘z=constant’ cross-sections.

Fig. 12. A front view of the thrust force.
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factor of safety is raised by 50% from F2 ¼ 1:777 to
F3 ¼ 2:419. In the case of 3D analysis, the value of B/2
in Eq. (1) has been taken as 4.7m to model the width of
the portal opening. The variables included in the
optimisation process were xB, yB, xC, yC, and zB, zC.
The location of A is fixed at the toe and zA is kept at

unity to accommodate a fixed width of the portal
opening. Therefore, xA, yA, and zA remain unchanged
during the optimisation process. Points B and C can
move freely in the x and y directions, thus each involves
two degrees of freedom. However, they are constrained to
move in 908 and 308, respectively to the horizontal in the
calculation. This would minimise the total number of
degree of freedom without too much loss of accuracy [13].
Table 6 shows the initial input and optimised output of
these variables and the associated factors of safety.

Fig. 13. Isometric views of the initial and critical failure modes. (a) the initial, F0 ¼ 4:02; (b) the final, Fm ¼ 3:61.

Table 3

Geotechnical properties of the rock mass of the Xiaowan arch dam

abutment

Shear surfaces Geological features f (8) c (MPa)

Slip surface A combination of rock bridges

and joints striking north–south

20 1.5

Row-to-row

interfaces

A combination of rock bridges

and joints striking east–west

20 1.5

Column-to-column

interfaces

Relaxation joints 30 0.1

Table 4

The factors of safety for B ¼ 44, 63, 89 and 108m

B (m) 44 63 89 108

Elevation of the point

of the upper exit (m)

1090 1130 1170 1210

Factor of safety 3.72 3.63 3.61 3.70
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It can also be seen that the minimum factor of safety
for the curved slip surface (F ¼ 2:419) is lower than that
of the planar basal slip surface (F ¼ 2:890) obtained
using the parameters listed in Table 5.
The next step of calculation proceeds with the exca-

vation of the tunnel, which causes some of the prisms
to hang over the ceiling of the opening. This unique

procedure can only be made possible in a 3D analysis.
However, some assumptions regarding the velocities of
the hanging prisms are necessary. In the approach
adopted here it is assumed that all the hanging prisms
move as a rigid body, with a direction parallel to the
neutral plane and inclined at an angle c to the base of
the first non-hanging prism on the neutral plane (refer to

Fig. 14. The Hongjiadu Project: (a) geological cross-section of the flood discharge tunnel; (b) the cross-section of the tunnel.
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Fig. 19). c is determined so that it offers the lowest
factor of safety. However, the actual implementation
involves a reduction of tanc by F in order to give
consistent weighting among various slip surfaces during
the optimisation process. That is, for the slope under
consideration, a value of c0 for any slip surface is
assumed, but the input of c for a particular slip surface
is related to its factor of safety based on the following
equation:

tan c ¼
tan c0

F
: ð13Þ

The calculation starts from an initial estimate
and concludes at an optimised solution as shown in
Table 7. Fig. 20 shows the critical slip surface with
an associated minimum factor of safety of F ¼ 2:058.
The calculation is based on comparing different

Fig. 15. The critical slip surface obtained from the three-dimensional stability analysis for planar slip surface along the weak seam AA0, F ¼ 2:890.

Fig. 16. The two-dimensional stability analysis for the planar slip surface along week seam AA0, F ¼ 1:096.

Fig. 17. The two-dimensional stability analysis for curve slip surface,

F ¼ 1:777.
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assumed values of c, which confirmed that taking a
c0 close to zero always gave smaller factors of safety.
By comparing Fig. 21 to Fig. 18, it can be observed that
the critical failure surfaces before and after tunnel
excavation have similar elevations at the crown,
indicating that a similar volume of the failure mass
is involved. However, the case with the tunnel opening
has a ‘flatter’ shape near the toe, which appears
reasonable, considering the existence of the free face
provided by the tunnel side walls, that allow more rock
to fall from both sides.
Obviously, the procedures described herein do not

replace the conventional procedures of assessing the
stability of underground openings, but instead provides
a method for evaluating the influence of the tunnel on
the stability of a slope weakened by the excavation of
the tunnel.

6. Future developments

In spite of the successes so far achieved, the method is
still in the early stages of development. Much more work
is required before the full potential of the method can be
realised.

* More numerical work is needed to upgrade the
discretisation process. As can be seen in the figures
presented in this paper, the edge prisms created by
the present program result in a relatively ragged
boundary to the failure mass. Algorithms that are
capable of offering automatic discretisation with little
distortion, for all kinds of practical problems, are
required.

* The implementation of the method is occasion-
ally hampered by convergence problems while
solving for the velocities of particular prisms from

Fig. 18. The critical slip surface obtained from the three-dimensional

stability analysis for curve slip surface, an oblique view, F ¼ 2:419.

Table 5

Geotechnical properties of rock material in the portal stability analysis

Shear surfaces Geological features f (8) c (MPa)

Slip surface A combination of rock bridges and joints 30 0.5

Weak seam AA0 Clay seam along the bedding plane 21.8 0.05

Row-to-row interfaces A set of in-dipping joints 20 0.2

Column-to-column interfaces Another set of vertically dipping joints 20 0.2

Table 6

The initial input and optimised output of the curve slip surfacesa

Nodal point A B C F

xA yA zA xB yB zB xC yC zC

Initial 0.00 0.00 1.000 28.4 40.00 1.039 56.77 91.70 0.739 3.608

Final 0.00 0.00 1.000 28.4 25.24 1.154 69.74 99.19 0.651 2.419

aNote: xA, yA are in metres.

Fig. 19. Cross-section at the neural plane, looking from the left.
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Eqs. (20)–(22)}see Part I of the paper. This problem
is usually connected with: (1) large friction angles;
(2) incompatible directions between normals to
the slip surface and interfaces of adjacent prisms;
and (3) insufficient numerical power in solving the
non-linear equations. These problems are currently
under consideration and should be solved in the near
future.

* As the method offers an upper bound solution, the
development of powerful optimisation routines is of
utmost importance.

* In addition to the two types of discretisation patterns
proposed in this paper, further approaches are
needed to extend the applicability of this
method to, for example, the analysis of rock block
systems.

7. Conclusions

The principles and analytical approaches described in
PART I of this paper require numerical support that
consists of: (1) a generalised pattern to model three-
dimensional slip surfaces, (2) powerful optimisation
routines to find critical failure modes, and (3) easy input
and output facilities capable of interpreting and dis-
playing the complicated topography and geology and
slip surface.
The examples presented in this paper show that these

problems can be reasonably solved. However, more
work is required to modify EMU-3D so that a three-
dimensional slope stability analysis program with high
efficiency and extensive applicability can be eventually
made possible.
Inputting the 3D topography and stratified

profile by cross-sections provides a simple method
of dealing with practical three-dimensional problems.
Only a small amount of additional work over two-
dimensional analysis is required for the analyses.

Fig. 20. An overview of the critical slip surface with tunnel opening.

Fig. 21. The critical slip surface with tunnel opening, a front view,

F ¼ 2:058. (Note: only the right half prisms of the failure mass are
shown in the figure.)

Table 7

The initial input and optimised output of the slip surfaces after tunnel excavation

Nodal point A B C F

xA yA zA xB yB zB xC yC zC

Initial 0.00 0.00 1.000 8.08 2.41 1.036 33.29 54.48 0.628 2.559

Final 0.00 0.00 1.000 8.08 �1.42 1.319 45.68 61.63 0.620 2.058
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As numbering of prisms is automatically carried
out by the computer program, the preparation of a
data file is only a matter of several hours of work.
Typically, once the input data has been input,
each analysis only consumes a few minutes of computer
time.
The discretisation patterns described in the paper

offers sufficient flexibility to model a wide range of
failure modes, such as the potential failure mass
of a tunnel portal or the abutment of an arch
dam. Applications to both problems have been
described in this paper. It also permits the search
for critical failure surface to be implemented in
the rational framework provided by optimisation
theory.
The use of the method and the associated program

has been demonstrated through a number of practical
examples, which clearly demonstrate the potential of
this method in solving problems that otherwise would
not be possible if two-dimensional approaches are
employed.
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