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Abstract

A three-dimensional (3D) slope stability analysis method, based on its two-dimensional approaches proposed by Donald and
Chen (Can. Geotech. J. 34 (1997) 853.) is presented in this paper. It starts from establishing a compatible velocity field and obtains

the factor of safety by the energy and work balance equation. Optimisation is followed to approach the critical failure mode that
offers the minimum factor of safety. The method is demonstrated to be identical to Sarma’s limit equilibrium method (1979) that
employs inclined slices, if it is extended to the 3D area. However, it has been established on a sound theoretical background

supported by the upper bound theorem of plasticity. Test problems have demonstrated its feasibility. A feature of the method is its
very simple way to obtain the factor of safety without complicated 3D force equilibrium evaluations. Limited assumptions are
involved in this method and their applicability has been justified. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Stability analyses of slopes are routinely performed by
two-dimensional (2D) limit equilibrium methods. For
rock slopes, conventional methods developed for soil
slopes, e.g. Bishop’s simplified method recommended by
Hoek and Bray [1], are often adopted. However, other
methods, e.g. Sarma [2] which employs slices with
inclined interfaces to simulate structural discontinuities,
have been highly commended [3]. Unfortunately, most
of these analyses are limited to two dimensions, which
cannot properly model the true three-dimensional (3D)
characteristics of a landslide. A practical 3D slope
stability analysis method and the related computer
programs are therefore urgently required [4,5].

There are a large number of publications that deal
with 3D slope stability analysis. In general, these
methods can be classified into two categories.

(1) The limit equilibrium approaches: Duncan [6]
reviewed the main aspects of 24 publications dealing
with limit equilibrium approaches. The failure mass
is divided into a number of columns with vertical
interfaces and the conditions for static equilibrium are
used to find the factor of safety. Hungr [7], Hungr et al.
[8], Chen and Chameau [9] and Lam and Fredlund [10]
extended Bishop’s simplified, Spencer’s and Morgen-
stern and Price’s methods from two to three dimensions,
respectively. However, only limited reports on the
application of these methods have been documented.
Stark and Eid [11] reviewed three commercially avail-
able computer programs in their attempts to analyse
several landslide case histories and concluded that ‘‘the
factor of safety is poorly estimated by using commer-
cially available software because of limitations in
describing geometry, material properties and/or the
analytical methods’’.

*Corresponding author. Tel.: 86-10-685-148-24; fax: 86-10-684-

383-17.

E-mail address: chenzy@tsinghua.edu.cn (Z. Chen).

1365-1609/01/$ - see front matter # 2001 Elsevier Science Ltd. All rights reserved.

PII: S 1 3 6 5 - 1 6 0 9 ( 0 1 ) 0 0 0 1 2 - 0



In general, the methods of columns with vertical
interfaces suffer the following limitations:

* A large number of assumptions have to be introduced
to render the problem statically determinate. Lam
and Fredlund [10] balanced the number of equations
that can be established from physical and mechanical
requirements to the number of unknowns involved in
these equations. They found that, for a failure mass
divided into n rows and m columns (refer to Fig. 1), a
total of 8mn assumptions are required.

* The method is further hampered by complicated 3D
vector analysis that generally involves a set of non-
linear simultaneous equations. Iteration is necessary
to obtain a solution unless further simplifications are
introduced.

* Since the method as applied to three dimensions is in
its infancy, no attempt has yet been published to find
a critical 3D slip surface of a generalised shape.

(2) The upper bound approaches: The basic principles
of the upper bound theory of plasticity as applied to 2D
geomechanical problems are well documented [12].
Publications dealing with this subject in three dimen-
sions is also available [13,14]. Most of the work is based
on analytical approaches in which the failure mass is
divided into several blocks with simplified slip surface
shapes such as straight or logarithmic lines. The often
complex geometry of the surface of the slope is usually
simplified to a plane described by two straight lines. The
material is assumed to be homogeneous and ground
water conditions are either ignored or over-simplified.
These simplifications have limited the application of
these methods to practical problems.

Recently, Donald and Chen [15] proposed a 2D slope
stability analysis method that is based on the upper
bound theorem but arrives at a solution numerically.
The failure mass is divided into slices with inclined
interfaces. They demonstrated that this method is
equivalent to Sarma’s method of non-vertical slices
and therefore is particularly applicable to rock slopes.
However, unlike Sarma’s original work that employed

force equilibrium, they started the calculation by
establishing a compatible velocity field and obtained
the factor of safety by the energy-work balance
equation. The subsequent automatic search for the
critical failure modelled to success in finding accurate
solutions for a number of closed-form solutions
provided by Sokolovski [16].

The method described in this paper is an extension of
Donald and Chen’s 2D approach. The failure mass is
divided into a number of prisms with inclined interfaces.
It uses the upper-bound theory and therefore avoids
introducing a large number of assumptions. In three
dimensions, the solution for the factor of safety still
remains a scalar manipulation of energy-force balance
without the need for complicated non-linear 3D force
equilibrium equations. Optimisation routines are fol-
lowed to find the critical failure mode.

PART I of this paper describes the principles and
methods of this approach, while PART II gives the
numerical procedures and their applications and exten-
sions to a number of typical 3D rock slope stability
problems such as those concerned with arch dam
abutments and tunnel portals.

2. Theoretical background

2.1. The upper bound method

The statement of the upper bound theorem, as it
applies to soil mechanics, is described in Chen [12]. Its
application to slope stability analysis is discussed by
Donald and Chen [15].

For a slope that is at limit state, the material within
the sliding surface, represented as O* , is assumed to be
plastic everywhere and therefore at yield. Under these
conditions, the upper bound theorem states that among
all possible external loads applied to a kinematically
admissible plastic zone O* , the external load T that
brings about failure on a failure mode O, can be
approached by minimising T * as determined from the
following work-energy balance equation.Z
O *

s*
ij � ’e

*
ij dvþ

Z
G *

dD*
s ¼ WV * þ T *V * ; ð1Þ

where V * is the rate of plastic displacement, generally
referred to as the plastic velocity. W is the body force
corresponding to the plastic zone. The left-hand side of
Eq. (1) represents the rate of internal energy dissipation
within the failure mass and along the slip surface.

The 3D energy approach described herein approx-
imates the failure mass by a series of prisms having
rectangular inclined side faces (Figs. 1 and 2).1 For this

Fig. 1. A plan view of the discretisation pattern for a 3D failure mass.

1The term prisms has been used rather than the more usual term of

columns to avoid confusion with the rows and columns of a matrix.
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form of discretisation, Eq. (1) may be approximated in
the form of a summation.X

D*
i $ j þ

X
D *

i l j
þ
X

D *
i; j ¼ WV * þ T *V * ; ð2Þ

where the symbol l is used to represent the interfaces
between two adjacent columns and $ , between two
adjacent rows of prisms (refer to Fig. 1). The three terms
in the left-hand side of the equation approximate the
energy dissipation on the row-to-row and column-to-
column interfaces and on the slip surface, respectively.

For a soil or rock slope that is subjected to an external
load To, the upper bound theorem states that the
loading factor Z, defined as

Z ¼
To � T *

To
ð3Þ

should approach its minimum in order to bring the
structure to failure. Other alternatives include the
coefficient of critical horizontal acceleration of the body
force applied on the failure mass, as suggested by Sarma
[2] and discussed by Donald and Chen [15]. The main
advantage of using these approaches is that Z can be
determined in a straightforward way from Eq. (2)
without the need for iteration.

The stability of a slope is generally assessed by
determining the factor (of safety), F , by which the
available shear strength parameters c0 and f0 need to be
reduced to bring the structure to a limit state of
equilibrium. The reduced parameters c0e and f0

e can
therefore be defined by

c0e ¼ c0=F ; ð4Þ

tan f0
e ¼ tan f0

e=F : ð5Þ

The upper bound method therefore requires that the
minimum value of F related to a critical failure
mechanism and determined from Eq. (6) be found.X

D*
i $ j; e þ

X
D*

i l j; e
þ
X

D*
i; j; e ¼ WV * þ ToV * :

ð6Þ
The three terms with subscript ‘e’ on the left-hand side
of Eq. (6) are determined on the basis of the reduced

strength parameters defined by Eqs. (4) and (5). For the
remainder of this paper, the subscript ‘e’ is attached to
any variable that has been calculated using these
reduced strength parameters.

2.2. Plastic velocity and energy dissipation

The upper bound solution described in this paper is
obtained by applying Eq. (1) to the assumed plastic
velocity developed on a Mohr–Coulomb yield surface,
which is given by the following equation:

f ðt; sÞ ¼ t� c0e � ðs� uÞ tan f0
e ¼ 0; ð7Þ

where t and s0 are the shear and normal total stresses on
the failure plane, respectively, and u is the pore pressure.
For an associative flow rule, the normal velocity Vn and
tangential velocity Vs obey the following relationship:

Vn

Vs
¼

@f =@s
@f =@t

¼ � tan f0
e: ð8Þ

This implies that for a Mohr–Coulomb material, the
plastic velocity is inclined at an angle of f0

e to the failure
plane. From a 3D point of view, the vector V lies within
an inverted cone of revolution (Fig. 3) defined by an axis
normal to the failure plane and subtending an included
angle of ðp=22f0

eÞ; i.e.

FðV ; NÞ ¼ cos
p
2
� f0

e

� �
¼ sinf0

e; ð9Þ

where N represents the vector of the normal to the
failure plane.

The Mohr–Coulomb failure criterion can also be
expressed in terms of the major and minor principal
stresses, respectively, s01 and s03,
1
2 ðs

0
1 � s03Þ cos f

0
e

¼ c0e � ½ 12 ðs
0
1 þ s03Þ þ

1
2 ðs

0
1 � s03Þ sin f0

e
 tan f0
e: ð10Þ

As the Mohr–Coulomb failure criterion does not include
the intermediate principal stress, the plastic strain
increment will only exist in the plane constituted by
the major and minor principal stresses. In other words,
the normal stress, shear stress, and the plastic velocity

Fig. 2. An isometric view of the discretisation pattern for a 3D failure

mass.
Fig. 3. The orientations of the plastic vectors determined based on the

associated flow law.
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vector all lie in the same plane (Fig. 3). This important
conclusion has enabled the calculation of the internal
energy dissipation in an identical manner to the 2D
approach. The work done by the internal total stress on
a unit area of the failure surface can be determined
without the knowledge of the internal stresses, which are
generally unknown anyway.

dD ¼ tVs þ sVn ¼ ðt cos f0
e þ s sin f0

eÞV

¼ ðc cos f0
e � u sin f0

eÞV : ð11Þ

In Eq. (11), the term c cos fe V is the internal energy
dissipation developed by the effective stresses and,
u sin fe V is the work done by pore water pressure
but treated as a term of negative energy dissipation for
convenience.

2.3. The relationship between the upper bound and force
equilibrium approaches

It has been shown [15] that solving Eqs. (2) or (6) is
equivalent to the conventional slope stability analysis
procedures that employ force equilibrium approaches.
Michalowski [13] showed that in some cases both
approaches gave the same results. However, he argued
that from a theoretical point of view, they should not be
regarded as equivalent. For better understanding of
the framework to this 3D stability analysis method, it
is advantageous to investigate further herein through
a two-wedge example, as shown in Fig. 4. For this
problem, if we assume that Mohr–Coulomb failure
criterion applied on both the bases and the interface, we
can solve the factor of safety in either of the following
two ways.

Method 1, the energy approach: In the upper bound
method, the plastic velocities applied to the left and right
wedges, V l and V r, respectively, and the relative velocity
of the left wedge with respect to the right wedge, Vj,
need to be determined. By definition we have

V j ¼ V l � V r: ð12Þ

Since V l; V r and Vj are all inclined at angle f0
e to their

respective failure surfaces, the magnitude of V r and Vj

can be determined as a function of V l [15],

Vr ¼ Vl
sin ðyl � yjÞ
sin ðyr � yjÞ

; ð13Þ

Vj ¼ Vl
sin ðyr � ylÞ
sin ðyr � yjÞ

; ð14Þ

where y is the angle of the velocity vector measured from
the positive x-axis. Neglecting the pore pressure terms in
this two-wedge problem, Eq. (6) becomes

Al c0l; e cos f
0
l; e Vl þ Ar c0r; e cos f

0
r; e Vr

þAj c0j; e cos f
0
j; e Vj ¼ Wl Vl cos rl þ Wr Vr cos rr

ð15Þ

where r is the angle between the weight vector and the
velocity and A is the area of the failure surface on which
V applies. By virtue of Eqs. (13) and (14), Vr and Vj can
be expressed as a linear function of V1, and therefore
can be deleted as it is contained in all terms of Eq. (15).
Eq. (15) then involves only one unknown, the factor of
safety F , which is implicitly included in c0eandf

0
e and can

be readily solved by iteration.
Method 2, the force equilibrium approach: If we

assume that the Mohr–Coulomb criterion applies on
both the slip surface and the inclined interfaces between
the wedges, the forces applied on a failure plane can be
divided into two components:

(1) The cohesion force Ce developed by c0e on the area
A, and

(2) The friction force Pe defined as the resultant of the
normal force N and its contribution to shear
resistance on the failure surface, which has a
magnitude of N tanf0

e.

Pe is inclined at angle f0
e to the normal to the failure

surface. Therefore, only its magnitude Pe remains
unknown, see Fig. 4.

Considering force equilibrium for the left and right
wedges, respectively, leads to

W l þ Pl; e þ Pj; e þ C l; e þ C j; e ¼ 0 ð16Þ

and

W r þ Pr; e þ P0
j; e þ Cr; e þ C j; e ¼ 0; ð17Þ

where Pj; e is the inter-wedge force applied to the left
wedge by the right wedge. P0

j; e is the reaction of Pj; e,
and is exerted by the left wedge on the right wedge. C j; e

is the cohesion force developed on the interface.

Pj; e ¼ �P0
j; e: ð18Þ

Resolving into the x and y directions, Eqs. (16) and (17)
yield four equations which permit the determination of
the four unknowns, Pl; e; Pr; e; Pj; e and F . The problem
is therefore, statically determinate and the solution for
the factor of safety is unique.

Fig. 4. A two-wedge example used to explain the equivalence between

the force equilibrium and energy approaches.
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However, the principle of virtual work provides a
more efficient way of solving Eqs. (16) and (17) for F .
To employ this method, virtual displacements V l;V r;V j

(Fig. 4) inclined at angle f0
e to their respective shear

surfaces are assigned. Pl;Pr and Pj are unknown
perpendiculars to V l;V r and V j, respectively, and do
zero work on them. Multiplying Eqs. (16) and (17) by
V l and V r, respectively, and summing leads to the
following work-energy balance equation,

W lV l þW rV r þ C l; e V l þ Cr; e V r þ C j; e V j ¼ 0: ð19Þ

Eq. (19) is identical to Eq. (15). Sarma’s method
obtains the factor of safety by solving Eqs. (16) and
(17), leaving Eq. (19) to be satisfied automatically, while
the upper bound approach finds the solution by
employing Eqs. (19) and (16), leaving Eq. (17) to be
satisfied automatically. If the factor of safety is the
primary concern, then implementation of the upper
bound method ceases with the solution of Eq. (15).

The above demonstration shows that the conven-
tional limit equilibrium method of inclined slices can
be solved in a more efficient way. Extensions of this
approach to 3D analysis will bring vital advantages, as
the solution still remains as a single equation similar
to Eq. (15) provided that the velocity field can be
determined.

3. The velocity field in three dimensions

3.1. The co-ordinate system and discretisation pattern

In a similar manner to the 2D limit equilibrium
method, the failure mass is divided into a number of
prisms with inclined inter-prism sides.

The assumption is made that inside the failure mass
there exists a plane, called the neutral plane, on which
there is no lateral movement relative to the main
direction of sliding. For a symmetric failure mass, the
neutral plane is the vertical plane of symmetry that
strikes in a direction representing the main direction of
sliding. In some applications (e.g. the wedge failure
analysis) the neutral plane is the central plane within the
failure mass, on which the prisms move in a parallel
direction. The co-ordinate system ox2oy is established
in this plane; oy is opposite to gravity, ox is perpendi-
cular to oy and opposite to the direction of sliding and
oz is established based on the right-hand rule. In the
neutral plane, the normal component of the velocity at
any point in the z direction is assumed to be zero or a
constant.

Each prism is approximated by a hexahedron as
shown in Fig. 5. The base ABCD forms a part of the slip
surface. EFGH forms a part of the slope surface. ABFE
and DCGH are front and rear surfaces, respectively,
and are represented by the symbol $ and called the

‘row-to-row’ interfaces. They are perpendicular to the
plane xoy. The left and right sides, ADHE and BCGF,
respectively, are perpendicular to the plane yoz, and are
represented by the symbol l and called the ‘column-
to-column’ interfaces. Rock slopes in general contain
one or several sets of sub-vertical discontinuities that
provide a realistic discretisation pattern for these
inclined interfaces. If these discontinuities do not exist,
such as in a soil slope, the inclinations of these interfaces
will be changed in a subsequent calculation until the
minimum factor of safety is obtained.

In plan, there are n rows of prisms in the ox direction.
In the positive and negative oz directions, there are mþ

and m� columns of prisms respectively (Fig. 1). The first
column of prisms in the ox direction have plane xoy as
their axis are numbered i ¼ 0. The prisms of the second
column in the positive oz direction are numbered i ¼ 1.
In the positive oz direction i ¼ 0; 1; . . . ; mþ, while in the
negative oz direction, i ¼ 0;�1; . . . ; m�. Henceforth, all
the following derivations are concerned with prisms that
are in the positive oz direction. The derivations equally
apply to those in the negative oz direction. The prisms
are numbered from 1 to n in the ox direction in the
neutral plane. A prism located in the ith column in the
oz direction and jth row in the ox direction is therefore
numbered i; j.

3.2. Calculating the velocity field

The prism numbered i; j has a velocity designated by
V i; j. The relative velocity of prism i; j with respect to
column i � 1; j (i.e, that on the column-to-column
interface) is designated V i l j. V i$j then represents the

Fig. 5. A hexahedral prism.
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relative velocity of prism i; j with respect to prism
i; j � 1. Refer to Fig. 1.

The velocity of a prism relative to its immediate
neighbours is calculated on the basis of satisfying the
flow law and displacement compatibility. There are
three different cases to be considered:

Case 1. The velocity field of the prisms at the neutral
plane: Calculating the velocities of the column series
i ¼ 0, i.e., those of the prisms at the plane xoy, is
equivalent to the method used in the two-dimensional
energy approach. In this case, the inclination angle
between V i; j and the xoy plane for all prisms are zero or
a constant. Given V0; j�1; V0; j and V0$ j can be found
using Eqs. (13) and (14).

Case 2. The velocity field of the prisms remote from
the edges of the failure mass: The velocity V i; j of prism
i; j is determined based on the velocities of their left and
lower neighbouring columns V i�1; j and V i; j�1 (refer to
Fig. 6(a)).

It is a requirement that

FðV i; j ;N i; jÞ ¼ sin f0
i; j ; ð20Þ

FðV i l j ;N i l jÞ ¼ sin f0
i l j ; ð21Þ

FðV i 7! j ; N i 7! jÞ ¼ sin f0
i 7! j ; ð22Þ

where FðV ; NÞ can be determined by

FðV ; NÞ ¼
X � L þ Y � M þ Z � Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2 þ Z2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ M2 þ N2

p ð23Þ

in which X ; Y ; and Z are components of V , and L; M;
and N; the direction cosines of the normal to the failure
plane.

Since V i�1; j and V i; j�1 are known, Eqs. (20)–(22) are
sufficient to determine the three components of V i; j with
the definitions

V i$ j ¼ V i; j � V i; j�1 ð24Þ

V i l j ¼ V i; j 
 V i
1; j : ð25Þ

Case 3. The velocity of a column located at the edge
of the failure mass: Consider the velocity of the first

prism of a prism series, which is numbered i; k (prism A
in Fig. 6(b)). It can be referred to as an edge prism. It
has a left neighbouring prism i � 1; k but no lower
neighbouring prism. V i; k can only be determined based
on the known velocity V i�1; k. In this case, the two
available Eqs. (20) and (21) are not sufficient to
determine V i; k as there are three unknown components.
One additional condition therefore needs to be intro-
duced to determine the velocity of the lower first prism
of a column series.

Assume that the magnitude of V i; k of prism i can be
related to that of prism V i�1; k, by a factor xi, that is,

Vi; k

�� �� ¼ xi Vi�1; k

�� ��: ð26Þ

With this additional assumption, it is now possible to
determine the velocity of the edge prism of each series.
The values of x1; x2; x3; . . ., can be determined using a
rigorous procedure that will be explained in Section 4.2.
It is also shown that setting xi ¼ 1 leads to a solution
with sufficient accuracy.

The computation procedure for the determination of
the whole velocity field includes the following steps:

(1) Set the velocity of the first prism in the neutral
plane, i.e., V0; 1, to be unity. V0; 2 and V0$ 2 can be
determined based on the procedure of Case 1.
Successive integration will allow the determination
of V0; j and V0$ j; j ¼ 2; . . . ; n.

(2) Calculate, V1; k, the velocity of the edge prism
numbered 1; k from V0; k based on the procedures
for Case 3.

(3) Start with V1; k, calculate V1; j,V1 l j and V1$ j

ð j ¼ k; k þ 1; . . . ; Þ, for the prism series i ¼ 1, based
on the procedures of Case 2 by successive integra-
tion.

(4) Calculate the velocities of the column series
numbered i ¼ 2; . . . ; mþ by the same procedures
as outlined in steps (2) and (3).

(5) Calculate the velocities of the column series to the
left of the neutral plane, i.e., i ¼ �1; . . . ; m� in a
similar manner to steps (2)–(4).

4. The energy method

4.1. Determination of F and Z

Once the velocity field is known, the energy dissipa-
tion on the slip surface and interfaces involved in Eq. (6)
can be readily determined by Eq. (11). Subsequently,
T * , or the loading factor Z defined by Eq. (2), can be
obtained.

Iteration is necessary when using Eq. (6) to solve for
F , which is implicitly involved in Eqs. (4) and (5). As
with the 2D case, iteration is performed by assuming a
series of values for F and calculating their associatedFig. 6. Calculation of the velocity of a prism. (a) Case 2, and (b) Case 3.
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loading factors Z. The Newton–Raphson technique is
recommended to find the value of F that gives a value of
Z ¼ 0. Convergence is generally not of concern since the
procedure involves only one variable.

4.2. Discussion on the assumptions

The method described previously involved several
assumptions. Firstly, it employs the associative flow
law. Very few soil or rock materials display associative
behaviour during loading. However they do exhibit
dilatancy during failure, and more or less offer a plastic
deformation inclined at an angle of f0 to the failure
plane at this particular limiting equilibrium state.
Therefore, its adoption in the upper bound method
where loading only during failure is concerned can
be justified on the basis that it considerably simplifies
the solution process without a significant loss in
accuracy.

Furthermore, even though the material does not
exhibit plastic deformation behaviour similar to what
has been assumed, the demonstrated equivalence be-
tween the force equilibrium and energy methods ensures
that implementing Eq. (6) at least offers a solution that
satisfies force equilibrium conditions.

The second assumptions are those involved in
determining the velocity field, i.e., a neutral plane and
a set of xi in the calculation for the velocities of the edge
prisms.

It has been found that these assumptions can be
avoided if the numerical procedure described previously
proceeds to calculate the forces applied on the slip
surface and the interfaces [17]. This has been made
possible since, as is stated in Section 2.2, the shear force
on the failure surface should lie on the plane defined by
the normal of the failure surface and the velocity.
Therefore, once the procedure for calculating the factor
of safety is completed, the direction of the shear forces
are known, resulting in a considerable reduction in
the number of unknowns in the force equilibrium
equations. It has been found that the number of
unbalanced force equilibrium equations just matches
the number of assumptions needed to define the
directions of velocities on the neutral plane and
the values of xi. An iterative procedure will permit
the determination of these assumed values [17]. How-
ever, the numerical procedures can be very complicated.
This is not generally acceptable in the area of slope
stability analysis where rapid solutions are required.
As a result, slope stability analyses have a long history
of employing various simplified methods to solve
practical problems successfully. From a practical
point of view, it is sufficient to adopt the simplified
approach of a neutral plane and the assumption for xi.
Some justification for this simplified approach can be
obtained by applying the method to practical problems,

Fig. 7. Example 1}spherical slip surface in a purely cohesive soil.

Fig. 8. The plan view of the discretisation pattern for Example 1.

Fig. 9. An isometric view of the discretisation pattern for Example 1.
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and studying the effect of variations in the assumed
parameters on the solution. It is also theoretically
acceptable to try several different locations for neutral

planes and different values for xi. The one associated
with the minimum factor of safety will most likely
represent the acceptable solution.

Fig. 10. (a–e). The velocity field for each cross section.

Z. Chen et al. / International Journal of Rock Mechanics & Mining Sciences 38 (2001) 369–378376



5. Test problems

A computer program EMU-3D has been coded for
3D slope stability analysis. Two test examples that have
been documented in the literature were performed to
investigate the feasibility of this method.

Example 1. A spherical failure surface in a purely cohesive
soil: Fig. 7 shows the simple problem of a uniform slope
and a spherical slip surface. This problem has been
extensively addressed in the literature [7,10]. Assuming that
the forces applied to the sphere are all parallel to the x2y
plane and by enforcing moment equilibrium about the z-
axis, it is possible to obtain a factor of safety of 1.402.
Although this is only one of many possible solutions that
satisfy equilibrium conditions, it is widely referred to as a
‘closed-form’ solution.

Since the failure surface has a symmetric shape, only
half of the failure mass was considered during analysis.
Initially, the failure surface was divided into 24 row-
to-row and 5 column-to-column interfaces as shown in
Figs. 8 and 9, and xi was taken to be unity for all edge
prisms. This case led to the solution F ¼ 1:504. Fig. 10
shows the velocities of the prisms at various cross
sections. Fig. 10 investigates the sensitiveness of the
assumed values of xi introduced in Eq. (26). It has been
found that the values of xi are indeed not sensitive to
the solution. As the variation in magnitudes of
the velocities on the neutral plane are only of the order
of 0.90 (Fig. 11(a)), there is no need for investigation

of xi beyond the range shown in Fig. 11(a). Most
importantly, Fig. 11(a) clearly shows that taking xi to
be unity gives the minimum values of F . Therefore in
the subsequent calculations xi was always taken to be
unity.

This solution was improved by inclining the row-to-
row interfaces and searching for the critical inclination
mode using the optimisation methods described in
PART II of this paper. The resulting minimum factor
of safety was Fm ¼ 1:422.

Refinement of this solution was sought by inclining
the column-to-column interfaces. The coefficient of
inclination is defined as

oi ¼
zi

n;u � zi�1
u

zi
u � zi�1

u

; ð27Þ

where zi
u and zi

n; u refer to the z values on the slope
surface of the original vertical and subsequent inclined
interfaces, respectively, while the superscript i refers to
the number of the interface (Fig. 12). The present study
only includes a constant value of o for all columns. It
has been found that the factors of safety associated with
o ¼ 1:1, or 0.9 were greater than that associated with
o ¼ 1:0. Therefore, the final solution obtained was
Fm ¼ 1:422. Table 1 summarises the factors of safety
obtained at various steps, compared with those docu-
mented in the literature.

Fig. 11. Variations of F with xi , (a) Example 1, (b) Example 2.

Fig. 12. Inclinations of the cross sections.

Table 1

Solutions obtained by various methods

Method F

‘Closed-form’ 1.402

CLARA (Hungr et al. [8]) 1.422

3D-slope 1200 1.386

Lam and Fredlund [10] 500 1.402

EMU-3D

o ¼ 1:0 1.422

o ¼ 1:1 1.480
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Example 2. A partly elliptical failure surface in a
cohesive-frictional material: Fig. 13 shows another
example that has also been referred to in [18]. The
homogeneous slope material has both c0 and f0 as
depicted in the figure. The slip surface is created by a
circle at the central plane and a series of elliptic lines
extending in z direction, as shown in Fig. 14. Similar to
Test Problem 1, the failure mass on the right side of the
neutral plane is divided into 6 vertical column-to-
column planes at a spacing of 10m. The initial input
failure mode gave a factor of safety of 2.332. Fig. 11(b)
shows the relationship between F and xi which again
showed minor variations in factors of safety associated
with different values of xi and a minimum value of F at
xi ¼ 1. The optimisation process eventually led to the
interface inclinations shown in Fig. 13 with a minimum
factor of safety of F ¼ 2:262. This can be compared to
the value of F ¼ 2:122 obtained by Zhang [18] using the
limit equilibrium method.

6. Concluding remarks

The upper bound plasticity method has distinct
advantages over other methods as it is mathematically
rigorous, virtually free of assumptions, and is numeri-
cally simple and stable. On extension to three dimen-
sions, these advantages to a large extent still remain.
This paper demonstrates that extending the traditional
2D method of slices to a 3D method of prisms is
possible. The velocity field can be determined in a simple
way using a limited number of assumptions. The final
solution has been shown to be relatively insensitive to
these assumptions.

Like many of the conventional 3D slope stability
analysis methods that are extensions of simplified 2D
approaches, the method presented in this paper is
actually an extension of Sarma’s 2D method of non-
vertical slices. However, the solution is obtained from a
much more efficient energy-work balance equation. The
solution is supported by the Theory of Plasticity if the
calculated velocity field represents a real plastic defor-
mation mechanism. The inclined interfaces between
prisms offer a unique advantage of modelling rock
slopes with sub-vertical discontinuities, as is illustrated
in PART II of this paper.
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Fig. 13. Example 2}Elliptical slip surface in a cohesive-frictional

material.

Fig. 14. An isometric view of the discretisation pattern for Example 2.
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