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Random trials used in determining global minimum factors of safety of slopes 
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The minimum factor of safety of a slope can be found by using various methods of optimization or by random 
search. This paper presents a combined approach that uses the random search to find an estimate of the global minimum 
which is employed by the methods of optimization as a starting point. Guidelines have been given to select an appro- 
priate number of random trials. Two simplified methods for calculating the factors of safety are suggested to minimize 
the computing time of the random searches. The approach has proved to be more efficient than either a purely stochastic 
or a deterministic one. 

Key words: slope stability, landslide, factor of safety, critical slip surface, method of optimization, random search, 
Monte Carlo method. 

Le coefficient de skcuritk minimum d'une pente peut Ctre trouvk par diffkrentes mkthodes d'optimisation ou par 
recherche alkatoire. Cet article prisente une approche combinke qui utilise la recherche alkatoire pour trouver une estima- 
tion du minimum global qui est utilisk par les mkthodes d'optimisation comme point de dCpart. Des directives ont 
Ctk donnkes pour choisir un nombre approprik d'essais alkatoires. Deux mkthodes simplifiies pour calculer le coefficient 
de skcuritk sont suggkrkes pour minimiser le temps des recherches alkatoires. L'approche s'est rkvilie &tre plus efficace 
que celle purement stochastique ou dkterministique. 

Mots ~16s : stabilitk des talus, glissement, coefficient de skcuritk, surface de glissement critique, mkthode d'optimisa- 
tion, recherche alkatoire, mkthode Monte Carlo. 

[Traduit par la ridaction] 
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Introduction 
Searching for minimum factor of safety in slope stability 

analysis has been made possible by the use of the methods 
of optimization (Baker 1980; Celestino and Duncan 1981; 
Nguyen 1985; Li and White 1987; Sun 1984; Chen and Shao 
1988). Although the author's experience with this approach 
has been fairly successful, it also indicated that the algorithm 
occasionally suffered from premature termination at which 
the solution was actually not a global minimum of the factor 
of safety. Experience shows that the task of determining 
minimum factor of safety becomes harsh when (i) the prob- 
lem involves many degrees of freedom, say seven or more; 
and (ii) the slope surface contains many zones of different 
soils. Figure l a  shows an example in which slip surface 1 
was used as an initial estimate. The solution obtained by 
the method of optimization is represented by slip surface 3, 
and the critical slip surface is slip surface 2. Figure l b  shows 
a uniform slope with the same geometry and starting point 
as those of the case shown in Fig. la. (The geotechnical 
properties for the example of Fig. 1 are indicated in Table 1 .) 
The calculation terminated successfully at the global 
minimum. 

One of the most common philosophies dealing with the 
difficulties in finding the global minimum is that the nearer 
the initial estimate is to the final solution, the more promis- 
ing it would be to have the algorithm succeed. 

A problem that consequently arises is how to find an 
initial estimate that is close enough to the global minimum. 
An attractive approach is the technique of random search, 
whose main principle includes generating a set of variable 
vectors and examining their objective functions. The variable 
vector associated with the smallest objective function is 
retained as the initial estimate for various methods of 
optimization to minimize the factor of safety. The variable 
Printed in Canada / Imprim6 au Canada 

vectors are generated with the aid of random numbers. This 
technique allows a uniform, high-density scanning of the 
space containing the variable vectors and consequently a 
rough determination of the location of the critical slip 
surface. 

Based on the principle of the Monte Carlo method 
(Hammersley and Handscomb 1964), it can be postulated 
that as the number of random searches approaches infinity, 
the smallest factor of safety will approach the global mini- 
mum. Therefore, the random search itself can be used to 
find the minimum factor of safety, as has been done by other 
researchers (Boutrup and Love11 1980; Siege1 et al. 1981). 
However, a very large number of searches will be needed 
to obtain sufficiently accurate solution, as will be discussed 
in this paper. It is for this reason that many authors (Fox 
1971; Wolfe 1978; Shoup and Mistree 1987) suggested the 
use of random search only for the purpose of locating the 
initial estimate to be employed in other methods of optimiza- 
tion. The combined approach will prove to be superior to 
either a purely stochastic or a purely deterministic one. 

The implementation of the random search 
The conventional procedure of stability analysis 

A typical procedure for determining the minimum factor 
of safety for a slope, such as that suggested by Chen and 
Morgenstern (1983) and Chen and Shao (1988), contains the 
following steps. 

(1) Divide a slip surface by a number of nodal points 
Al ,  A2, ..., A, (Fig. 2) whose coordinates are 
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( a )  

Scale 

TABLE 1. Geotechnical properties of the example shown in Fig. 1 
C 

Shear strength parameter 

Soil Density p 4 '  C ' 
layer (g/cm3) ("1 (kPa) 

Fig. l a  I 2.0 38 0 
I1 2.0 23 5.3 
I11 2.0 20 7.2 

Fig. l b  I11 2.0 19.6 3.0 

/ 
FIG. 2. Slip surfaces of generalized shape. 1, zO,  the initial esti- 

mate; 2, Z ,  the slip surface during the process of optimization; 
3, Zm, the critical slip surface. 

FIG. 1. An example displaying the success and failure of the 
searches for the minimum factor of safety. (a)  A layered slope. 
Slip surfaces: 1, the initial estimate, F, = 1.951; 2, the known 
critical slip surface, Fm = 1.484; 3, the slip surface at which the 
calculation terminates, F = 1.51 1 .  (b)  A uniform slope. Slip 
surfaces: 1, the initial estimate, Fo = 1.576; 2, the critical slip 
surface at which the calculation terminates, Fm = 1.006. 

where i = 1,2,  ..., m. The slip surface is approximated by 
connecting each pair of contiguous nodal points with a 
straight line or a smooth curve. A smooth curve is generally 
preferred unless a weak band, such as A4-AS in Fig. 2, is 
simulated. 

The value of factor of safety F can be determined by the 
conventional method of slices (see Appendix). F is then 
expressed as a function with respect to xl,  yl, x2, y2, ..., x,, 
Ym. 

where bi is the distance along ai, the specified direction of 
movement. The factor of safety can also be expressed as a 
function with respect to bi (i  = 1, 2, ..., n). 
[5] F = F(b)  = F(bl ,  b2, ..., b,) 
Some of the nodal points may be specified to be fixed, and 
n is the total number of the nodal points that are specified 
to move during the process of optimization; n is referred 
to as the degree of freedom. 

The author's early work (Chen and Shao 1988) provides 
an option that allows a nodal point to move in both x and 
y directions rather than in a specified direction. This alter- 
native has the disadvantage of having two degrees of free- 
dom for each nodal point, which increases the numerical 

121 F = F(xl,Yl,X;?,Y2, ..., X,,Y,) efforts in finding a converged solution. Since these efforts 
are seldom rewarded by more accurate solutions, the alter- 

(2) each point a direction of movement native was not used later. It is suggested that (j) for a nodal 
a; in which the point moves from Ai towards Bi, the corre- point located in a weak band, as a discontinuity of a sponding nodal point that defines the critical slip surface rock mass, ai is taken to be the dip angle of that band Zm (Fig. 2). The coordinates of the ith nodal points of any to points and in Fig. 2); and ( ii) if the nodal slip surface, Z;, can be defined in terms of the relative points are located in an area in which the failure mode is 
increment bi with respect '0 z;, a reference variable vector not by geological structures, specify based on that is generally taken as the initial estimate defined during experience. Different specified values usually do not affect 
the optimization process: 

, , the final solution appreciably if these points are connected 
by smooth curves. 

(3) Find a variable vector b, associated with Fm, the 
minimum of F, by various methods of optimization, such 
as the Simplex method, Deviation-Fletcher-Powell (DFP) 
method, etc. 
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0 
X .  

Confidence area 

\ Search area \ 
Critical slip surface 

FIG. 3. The search area and confidence area. 

The procedure of the random search 
The purpose of random search is to find an initial esti- 

mate Z0 used as the starting point in search of b,, or Zm, 
by conventional methods of optimization. The procedure 
is proposed to consist of the following steps. 

(1) Define an area, called search area, that is expected to 
cover the critical slip surface being sought. This area, shown 
in Fig. 3, has its left and right borders 2' and Zr, respec- 
tively, each represented by a slip surface. The coordinates 
of the nodal points of Z' and Z' are 

where i = 1, 2, ..., m and Di is called the band width of 
the search area. 

(2) Generate a slip surface Z0 that falls into the search 
area and calculate its factor of safety Fo. The coordinates 
of Z0 is determined by 

[9] z,!' = Zf + r p ,  

where ri is a random number ranging between 0 and 1. The 
generation of random numbers is a special topic covered by 
statistics textbooks. Most computer libraries provide pseudo- 
random number generators that offer reproducible random 
number sequences. These random numbers have been suc- 
cessfully subjected to various statistical tests. As a conse- 
quence, any part of the search area hold equal likelihood 
of accommodating ZO, so determined by 191. 

(3) Repeat step 2 and determine another slip surface Z' 
and its associated factor of safety F' . Compare Fo with F' . 
Z0 and Fo are replaced by 2' and F', respectively, if F' is 
smaller than Fo. 

(4) Step 3 is repeated and Z0 and Fo are renewed until the 
number of trials reached a specified value N and Z0 is 
believed to be close enough to Zm. 

Determination of the number of random trials 
It is clear that the greater the number of random trials, 

the more certain one may feel with the Z0 so obtained. 
However, the computing time consumed by too many ran- 
dom trials can hardly be afforded by practitioners. The 
problem that consequently arises is, what is the general 
guideline to select an appropriate number of random trials? 
Based on the postulations originally proposed by Brooks 
(1958), and in the light of the special features a slope stability 
problem may possess, the following formulations are pre- 
sented (refer to Fig. 3). 

Suppose that in the neighbourhood of the critical slip sur- 
face there exists a band, called confidence area, in which 
any kinematically acceptable slip surface can be used as an 
initial estimate to conduct a successful search of the critical 
slip surface by the conventional methods of optimization. 
Its left and right borders are also represented by slip sur- 
faces, as is done for the search area. It is further assumed 
that the band widths di of the confidence area are propor- 
tional to those of the search area (D,) with a constant 
ratio m: 

By the theory of probability, the chance of successfully 
having all the n nodal points of a randomly generated slip 
surface fall into the confidence area is mn. According to 
the binomial distribution theory (Lindley 1965) the proba- 
bility of having r successes in N random surface is 

[Ill  P(&)  = Ch(mn)r(l - rnn)N-r 
The probability that in N trials there is at least one suc- 

cess is 

[12] P = 1 - c:(mn)'(l - mn)N 

= 1 - (1 - rnn)N 
P i s  called confidence level. It indicates the certainty with 

which one can expect to have at least one randomly gener- 
ated slip surface fall into the confidence area if N random 
trials are performed. 

Take that shown in Fig. la as an example. The slip sur- 
face of generalized shape is divided into three movable nodal 
points A,  B, and C and a fixed one D as shown in Fig. 4. 
Based on experience, a search area is defined as the one 
shaded. It is presumed that the confidence ratio rn is 0.5. 
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TABLE 2. Geotechnical properties of the example shown in Fig. 7 

Density p Shear strength parameters 
(g/cm3) 

4 '  C' 
Soil layer Saturated Wet ("1 (kpa) 

Clay core 2.07 2.01 25 
Rock fill 2.3 2.11 40 
Weak seam 2.07 2.01 14 

TABLE 3. Factor of safety obtained by various simplified methods and the rigorous 
method for the slip surfaces shown in Fig. 7 

Simplified Lowe-Karafiath Simplified Rigorous 
Slip surfaces method 1 method method 2 method 

NOTE: The Lowe-Karafiath method is found in  owe and Karafiath (1959). 

Scale 
t I 

0 5 10 rn 

Scale 
m 
0 5 lorn 

FIG. 4. Search for the minimum factor of safety for the prob- 
lem shown in Fig. la. Slip surfaces: 1 ,  the initial estimate, 
determined by the random search, Fo = 1.384; 2, the critical, 
obtained by the Simplex method, F,,, = 1.373. 

From [12] it can be found that 25 trials are required to gain 
96% confidence of success. 

P = 1 - (1 - 0 . 5 ~ ) ~ '  = 96% 
On the other hand, from the viewpoint at conservativeness 

one may define a search area larger than the previous one. 
A smaller confidence ratio, say m = 0.3, is adopted then. 
To approximately reach the same confidence level 122 ran- 
dom trials will be needed. 

The search area and confidence area are determined based 
on experience and adjustment. It is usually not difficult to 
make the judgement. One or two reevaluations might be 
helpful to gain an insight into the approximate location of 
the critical slip surface and hence make an appropriate set- 
ting of the search area and the evaluation of m. 

Restrictions to the shape of the random slip surfaces 
The slip surfaces generated by [9] include some curves 

whose shapes are kinematically unacceptable as a failure sur- 
face, as discussed by Siege1 et al. (1981). Some restrictions 
may be imposed based on experience. For example, we 
impose the following restrictions to Z calculated by [9] for 
soil slopes. 

For any two contiguous nodal points i and i + 1 ,  it is 
required that 

FIG. 5. Comparisons between the results obtained by the 
Bishop's simplified method and the simplified method 1 for the 
example shown in Fig. la (horizontal seismic force coefficient = 
0.15g). The critical slip surfaces: 1 ,  obtained by the Bishop's 
simplified method, F,,, = 1.006; 2, obtained by the simplified 
method 1 ,  F,,, = 0.967. 

where Gi is the inclination of the line connecting the points 
i and i + 1 to the x axis. 

Any slip surface that violates either of the above restric- 
tions is rejected immediately. The efficiency of the random 
search can be greatly enhanced with these restrictions. 

Simplified methods used for random search 
From [12] it can be found that the number of random 

trials N required for a successful search at a certain con- 
fidence level increases by the exponent of the degrees of 
freedom n. Several hundred or thousand trials may be 
needed if the problem involves 5-7 degrees of freedom. This 
demanding computing effort can be alleviated by using 
simplified methods to calculate factor of safety during ran- 
dom search. Since the purpose of the random search is only 
to locate an initial estimate, a high level of accuracy for fac- 
tor of safety is unnecessary. In the Appendix, two simplified 
methods are proposed. They are straightforward, without 
the need of iteration; applicable to slip surfaces of generalized 
shape; and reasonably accurate. The simplified method 1 
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FIG. 6. The random slip surfaces generated in the search area shown in Fig. 5. Refer to Table 4 for factors of safety. 

Scale 
t I 

- 
The critical slip surface, F, = 1.198 

FIG. 7. Stability analysis of the downstream slope for the Xiaolangdi rock-fill dam. 

was actually the suggested method to find the initial estimate 
Fl in Chen and Morgenstern's (1983) approach but was not 
formally published then. It has been subjected to numerous 
tests and has proved to be a good method to calculate the 
approximate values of F provided that the slip surface is 
fairly smooth (Chen 1986). Figure 5 compares the critical 
slip surface obtained by the Bishop's simplified method with 
that obtained by the simplified method 1 for the case with 
horizontal seismic forces. Good agreement between the 
results of the two methods has been obtained. 

It has been noted that for a slip surface containing some 
abrupt bendings, such as the points C and D in Fig. 7 
(geotechnical properties of this example given in Table 2), 
the difference between the values of F of the accurate 
method and the various simplified methods can be signifi- 
cant. The simplified method 2, shown in the Appendix, is 
consequently suggested. This method actually performs the 
rigorous procedure but stops right after the first iteration 
ends. Since Chen and Morgenstern's (1983) approach 
rigorously follows the Newton-Raphson method, the first 
iteration usually does the most to improve the factor of 
safety when it is transferred from its initial estimate to the 
final solution. Table 3 presents the values of F obtained by 
various simplified methods and the rigorous method for the 
example shown in Fig. 7. It can be found that only the results 
given by the simplified method 2 were close enough to the 
accurate value of F. 

TABLE 4. Factors of safety of the 
random surfaces shown in Fig. 6, 
obtained by the simplified method 1 

Surface F 

Illustrative examples 
Let us refer back to the failure to find the global mini- 

mum as discussed in the Introduction and shown in Fig. la, 
but this time points A,  B, C, and D were connected by 
smooth curves. The search area was defined as the cross- 
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TABLE 5. The minimum factor of safety calculated by various methods for the 
example shown in Fig. 4 

Random search involved 
Random search not 

involved CPU for 
random CPU, 

Method CPU time Fm search total Fm 

Simplex (Fail) 39 421 1.368 
Deviation-Fletcher-Powell (Fail) 39 327 1.373 
Powell 522 1.388 39 413 1.378 

NOTE: Central processing unit (CPU) time is measured in seconds on an IBM-PC-XT. 

TABLE 6. Search for the minimum factor of safety 
by various approaches (Fig. 7) 

CPU 
N (time) Fm 

Purely random search 223 699 1.293 
605 3 431 1.270 

1336 6 437 1.261 
2356 11 170 1.253 

Simplex method 0 2 940 1.234 
Combined approach 223 2661 1.199 

was shown as ABCDE. Table 6 shows the calculated results 
for Fm and the computing time associated with various 
approaches. It can be found that in the case of purely ran- 
dom search, Fo approaches F, very slowly as the number 
of random searches N increases. It got Fm = 1.253 (CPU 
time 11 170 s) compared with Fm = 1.199 (CPU time 
2661 s) obtained by the combined approach. On the other 
hand, the search by the Simplex method without the aid of 
random search gave a converged value of Fm but was less 
accurate and more time consuming than the approach 
involving the random search. 

NOTE: N, number of random searches involved. 
Central processing unit (CPU) time is measured in seconds 
on IBM-PC-XT. The combined approach performs 
223 random searches, after which the Simplex method was 
used. 

hatched area in Fig. 4, and rn was taken to be 0.4. Using 
the simplified method 1, 45 random searches were per- 
formed. A confidence level of 95% can be obtained accord- 
ing to [12]. Figure 6 shows 16 of the 45 randomly generated 
slip surfaces and Table 4 shows the factors of safety of these 
surfaces, obtained by the simplified method 1. The one that 
is associated with the smallest factor of safety is shown by 
the solid line in Fig. 4. Starting from this slip surface, any 
optimization method can approach the critical slip surface 
without difficulty. Table 5 shows the calculated results and 
the computing time associated with the Simplex method, 
DFP method, and Powell's method. Without random 
search, both the Simplex and DFP methods failed to con- 
verge. The Powell's method was adopted lately by the author 
and is also aimed at overcoming the convergence difficulties. 
It involves some treatments particularly concerned with the 
slope stability problem. It did succeed in finding the global 
minimum without the random search but was more time 
consuming. 

Figure 7 presents the practical applications of this 
approach. The 167 m high Xiaolangdi rock-fill dam in China 
is constructed on the Yellow River alluvium that overlies 

Summary and concluding remarks 
(1) The critical slip surface of a slope can be determined 

by either the random search method or the methods of 
optimization. The computing effort of the former increased 
by the exponent of the degree of freedom, whereas the latter 
has the limitation of occasionally missing the global mini- 
mum factor of safety. The approach described in this paper 
combines the two methods and successfully circumvents their 
respective drawbacks. 

(2) The method uses random search to find the rough 
location of the critical slip surface which is employed as the 
initial estimate of the method of optimization. The estimate 
so obtained will allow a quick approach to determination 
of the actual critical slip surface. 

(3) The use of the simplified methods has enabled a very 
effective random search and hence minimized the computing 
time incurred by the random search. 

(4) Admittedly, the approach described herein does not 
exclude the alternative of using the optimization method 
solely if the problem investigated is simple and numerical 
convergence for global minimum is not of concern. 
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Appendix: Simplified methods of calculating factor of safety 
The rigorous method 

Allowing the presence of horizontal seismic forces, the force and moment equilibrium equations of the 
method of slices given by Chen and Morgenstern (1983) are updated here (refer to Fig. Al). 

FIG. Al. The limiting equilibrium of a slope analyzed by the method of slices. (a) Stability analysis along a potential 
slip surface. ( b )  Forces applying on a slice. 

J a 

in which 
dW [A31 p(x)  = (z + q)sin(4: - a)  - r,, - sec a sin 4: + C: sec a cos 4: - q, cos(4: - a )  
d x  

E 
[AS] t(x) = lx (sin 0 - cos 0 tan a)exp[l tan(+: - a + 0) @ dl] d[ 

a a d3- 

[A61 Me = qxh, d x  i: 
[A71 tan P = fo(x) + Xf (x) 
in which F is factor of safety; tan 4' and C'  are effective coefficients of friction and cohesion, respec- 
tively; tan 4: and C: are (tan $')/F and C1/F, respectively; d W/dx is the weight of the slice per unit width; 
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ru is pore-pressure ratio; q and q, are vertical surface load and horizontal seism'ic force per unit width, 
respectively; h, is distance between the point of action of qx and the base of the slice; a a M  P are the 
inclinations of the base of the slice and the interslice force G to the horizontal, respectively; fo(x) and f (x) 
are assumed distributions of tan 0; and X is a coefficient to be determined. 

[All and [A21 involve two unknowns, F and X, which are solved using Newton-Raphson method by the 
following iterative procedure. 
[A81 AFi = Fi+ 1 - F, 

[A91 AXi = Xi+ 1 - XI 
The formulas calculating [A81 and [A91 and aG,/aF, aM,/aF, aG,/aX, and aM,/aX, which are involved 

in [A81 and [A9], are [42]-[51] found in Chen and Morgenstern (1983). Among them only [48] needs updating 
due to the presence of the horizontal seismic forces, which are given as [AlO] here. 

[A101 k(x) = - dW sin 4: cos 0 - r, - sec a sin 4: cos(0 - a )  
d x 

+ C: sec a cos 4: cos(P - a )  - qx sin 4: sin 0 cos +:/[F.p(x) cos(4: - a + P)] I 
Assuming an initial estimate Fl and X1, and substituting them into [8] and [9], F2 and X2 can be obtained. 

The procedure is repeated until the specified convergence criterions are met. The initial estimate Fl can 
be determined by the simplified method 1 given subsequently, and XI is obtained by substituting [A71 into 

[All]  Sb  tan 0 d x  = 
a 

Simplified method I 
Assuming that /3 = a and that the horizontal seismic force applies at the base of the slice, i.e., 

[A121 h, = 0 

[A21 is then automatically satisfied, and [All results in the following equation to calculate factor of safety: 

tan 4' j: ~ . e x P [ -  (T a + s)] F d x  

S:BeeXp[- (y a + 5)] F d x  

where 

- r.seca)tan+' + C' s e c a  - q x s i n a t a n 4 '  + q c o s a t a n 4 '  I 
[AIS] B = [ (z + q)sin a + q, cos a I 

j= 1 

Ki is a coefficient accounting for possible abrupt change in a or 4'  between two contiguous slices, and 
ai is in radians. Ki is a constant in an interval of slip surface that is smooth and homogeneous and will 
be increased by (tan 4f.ai)f after passing through the point i at which ai or 4i changes abruptly. 
(tan 4f.ai)f is defined as [(tan 4;. ai)r - (tan 4/-ai),] where r and 1 refer to the right and left values of 
the variables in the parentheses at the point of discontinuity. 

Since both sides of [A131 involve F,  iteration is necessary for solving F. For further simplification, we 
introduce the following formulations. 

First, add a constant Kc/F to the variables of the exponent functions in both the numerator and 
denominator of [A1 31 : 

tan 4'  
S : ~ . e x p [ -  (T a! + )  F + $1 ,X 

tan 4'  
S : ~ - e x p [ -  (Ta + 5) F + $1 d x  

It is not difficult to demonstrate that the right side of [A171 is identical to that of [A13]. Kc/F is selected 
that 
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CHEN 

tan 4' Kc 
- (7 F \ b 

is small in absolute value compared with unity, so the following approximation stands: 

tan 4' Ki Ke tan 4' 
[ A I ~ I  ex,[- (, F F K, 

It is found that this requirement can be met basically for all the slices if we take 

where 44, and a,, are the average value of 4' and a between the inverval (a, b), respectively. 
Second, substituting [A181 into [A17], we have 

where 

[A211 Ak = j: B d x  

[A231 Ck = A< dx 1: 
[A241 !: = tan 4 ' . a + K, - tan 44,. a,, 

Since Ck is generally small compared with Bk, [A181 can be further simplified as 

Equation [A251 is the formula calculating factor of safety by the simplified method 1. 

Simplified method 2 
This method performs the rigorous method but stops right after the first iteration finishes. Assumptions 

made for fo(x) and f (x) in [A71 are 
[A261 fo(x) = 0 
and 
[A271 f (x) = 1 
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