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Extensions are suggested to the generalized method of slices that is commonly used in slope stability analysis. It is shown
that restrictions exist on the assumptions used to make the problem statically determinate. In addition, a numerical procedure
has been developed to find the bounds to the factor of safety, subject to additional requirements of physical admissibility. As
aresult of these developments it has been possible to produce a revised computer program that appears to overcome the problems
of convergence experienced by other programs in current use. Results obtained with this new analysis confirm the reliability of
several methods of analysis used in practice.

On propose des développements 2 la méthode des tranches généralisée qui est couramment utilisée dans I’analyse de stabilité
de pentes. On montre qu’il existe des restrictions aux hypothéses utilisées pour rendre le probléme statiquement déterminé. De
plus, une procédure numérique a ét¢ développée pour trouver les limites du facteur de sécurité compte tenu d’exigences supplé-
mentaires d’admissibilité physique. Suite a ces développements il a été possible d’établir un programme d’ordinateur qui semble
éliminer les problémes de convergence rencontrés dans d’autres programmes actuellement en usage. Les résultats obtenus

avec cette nouvelle analyse confirme la fiabilité de plusieurs méthodes de stabilité utilisées en pratique.

Can. Geotech. J., 20, 104-119 (1983)

Introduction

Generalized methods of slices are commonly used to
investigate the stability of slopes, particularly when the
section is nonhomogeneous. However, the problem is
statically indeterminate and assumptions are necessary
in order to obtain numerical results. Several methods
have been advocated. For example, Janbu (1954, 1973)
made assumptions regarding the location of the point of
action of the interslice force and Morgenstern and Price
(1965) and Spencer (1967, 1973) assumed the shape of
the distribution of the inclination of the interslice force.
Sarma (1973) adopted the distribution of the vertical
component of the interslice forces.

A survey of the commonly used methods indicates the
following.

1. The assumptions made for the different unknown
variables involved in the equilibrium equations do not
result in much difference in the final factor of safety.
This is not surprising when considering that the various
methods are based on the same equilibrium equations
and the unknown variables are interrelated.

2. The assumptions regarding any unknown variable
are not unique. A number of functions which lead to a
group of solutions satisfying the equilibrium equations
may be assumed. Some of the solutions should be
rejected due to the requirement for physical admissibil-
ity (Morgenstern and Price 1965; Whitman and Bailey

[Traduit par la revuel]

1967; Janbu 1973). Since only the shape of the distribu-
tion of one of the unknown functions is assumed, the
physical reasonableness cannot be checked until the
final solution has been found. The selection of the
assumed function depends to a large extent on intuition
and experience but may be guided by stress analysis.
Since we are basically confronted with an infinite
number of possible choices for the assumed function,
after performing several calculations we are still uncer-
tain if some relevant solutions are missing or not.

The purpose of this paper is to overcome the disad-
vantages involved in the currently used methods by the
following.

1. It will be shown that restrictions that have Been
ignored so far exist on the boundary values of the
distributive assumption. The search for the solution to
the equilibrium equations is then undertaken with a
group of assumed functions that are fixed at both ends.

2. A method of sensitivity analysis to explore the
influence of the assumed functions associated with
physically reasonable solutions to the equilibrium equa-
tions will be developed. An efficient computer program
for this method has been coded.

With the help of these two extensions, the bounds on
the factor of safety caused by conditions of physical
admissibility can be found. The effort required of the
user is reduced considerably.
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The general equilibrium equations

Limit equilibrium considerations in slope stability
analysis are based on the following.

1. Principle of equilibrium

The sliding mass is divided into a number of slices.
The requirements for force and moment equilibrium
should be fully satisfied for every individual slice.

2. Mohr—Columb failure criterion

The Mohr—Columb failure criterion holds along the
failure surface,

[1] 7=C + o, tand’

where g, = normal effective stress on the failure plane,
7 = shear stress on the failure plane, C' = effective
cohesion, and ¢’ = effective friction angle.

3. The factor of safety F

This is defined as that value by which the available
shear strength parameters must be reduced in order to
bring the soil mass into a state of limiting equilibrium
along a given slip surface. Hence,

[21 7= C. + (tan ¢.")oy’
where

31 C.=C/F

[4] tan . = (tan ¢')/F

and F = the factor of safety.

In addition to these considerations, there are condi-
tions of physical admissibility (Morgenstern and Price
1965) as follows.

1. The shear force on the vertical surface of any slice
should not exceed the shear strength that can be
mobilized along the surface (Fig. 1),

[51 F,=[E'tand,,' + Co,'(y = )I/X>F
or
[6] Fy=F,/F
= [E' tan dave’ + Cave'(y — 21/X > 1
where F, = factor of safety along the vertical surface of

the slice, F,. = relative factor of safety along the
vertical surface of the slice, E' = effective normal force

- on the vertical surface, X = shear force on the vertical

surface, tan ¢,,’, C,,’ = the average effective strength
parameter on the vertical surface, tan ¢,y.', Cave’ = tan
b’ Ca' divided by the factor of safety, y = the
ordinate of the slip surface, and z = the ordinate of the
slope surface.

2. To avoid tensile stresses the line of action of the
resultant effective normal force should not lie outside
the vertical surface of the slice, i.e. (Fig. 2a),

71 0<A/ <1

b
|
|
|
|
|
|
|
|
l
|

F1G. 1. The generalized failure surface.

where
(81 A =0G—-y)/ (-2

and y,’ = the ordinate of the point of action of the
effective normal force.

The general equilibrium equations for a slice can be
expressed as

dG d
9] cos(d,' —a + B)a— sin (' —a+B)d_EG

_ [dW ) F— o) + g si .
= —&;sm (b’ — ) + g sin (.’ — )

dW b ! 1 !
- T = secasin ¢’ + C.’ sec o cos ¢,

[10] GsinB=— y%(G cos f3) +%(th cos f3)

where G = the resultant total force on the vertical side of
the slice, = the inclination of G to the horizontal,
dW/dx = the weight of the slice per unit width, r, =
pore pressure ratio (Bishop and Morgenstern 1960),
and g = vertical surface load.

Equation [9] can be obtained by substituting

[11] E= GcosB

[12] X=Gsinf

into the equation of force equilibrium (eq. [10]) of
Morgenstern and Price’s paper (1965). However, the
signs of the various terms of the two equations are not
identical due to the different positive direction of the
coordinate systems that have been used. Equation [9]
can also be established by projecting all the forces acting
on the slice to the axis A—A which is inclined at an angle
of (¢’ — «) to the horizontal (Fig. 2b). In this case the
resultant of N and S, the force P, which is inclined at an
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angle of ¢.' to the normal, contributes nothing to the q
force equilibrium equation. [T
Equation [10] is obtained by considering the moment / _
AX >

equilibrium about the midpoint of the base of the slice.

[13] (G + AG) cos (B + AB)(y + Ay) : A
= (3 + Ay) — 34y] _ EnE l Lﬂﬁ 5
—GeosB(y—y, +3Ay) + G(sinB)Ax=0 I BaB E

> +A
Neglecting the small magnitudes of order higher than G+AG ~ X+aX aw
AG and AB, [13] reduces to [10]. Y
The corresponding boundary conditions are: /{g
'S
[14] G(a)=0 RN
\Le-\N

[15] G(b) =0 - \

[16]  yda) = y(a) u

(7] y4b) = y(b) )

where a, b are abscissa values of the ends of the sliding
mass.

If the slip surface terminates at a slope surface that is
not vertical, the slices at both ends are triangles rather
than rectangles. It is then required that the value of § and
A be fixed at points A and B. A detailed discussion will
be given in a subsequent section.

By virtue of [14]-[17], [10] can be integrated:

b
[18] f G(sin 3 —tanacos B)dx =0

a
For brevity, [9] is rewritten as

dG ,dB _ ,
[19] T tanmbeaG— p(x) sec e

(b)
F1G. 2. The force equilibrium of a slice.

where

dw d
[20] p(x) = P sin (' — @) + gsin (b’ ~a) — ry —dy sec asin ¢’ + C.' sec a cos ¢b,'
x
[21] "be, = ¢’e, —o+t B

By substituting the boundary condition of [14], the solution to [19] is

x d x 3 d
[22] G(x) = —exp [f tan (.’ — o + B) H% dC] f p(&) sec s’ exp [“ f tan (' — o + B) d—gdﬁ] dg

where £ and { are dummy variables substituting for x.
Substitution of [15] into [22] yields

b
[23] f p(x)s(x)dx =0
where

[24] s(x) = sec ¥, exp [—— fx tan s’ % d(_f,]
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Substituting [22] into [18] and integrating by parts, we obtain

b
[25] J p(xX)s(x)t(x) dx = 0

where

X

[26] #(x)= J

a

Equations [23] and [25] are governing equations for
the calculation of the factor of safety.

The function p(x), which does not contain B(x),
accounts for the geometrical and physical properties of
the slope. The function s(x) takes into account the
assumption that will be made for B(x). For an assumed
function B(x), the value of F that satisfies [23] and [25]
may be found. It has been shown (Chen 1981) that [23]
and [25] are reducible to special cases, such as the
wedge slide analysis, Bishop’s simplified method
(Bishop 1955), the logarithmic spiral method (Taylor
1948), and Spencer’s method (Spencer 1967) if the
appropriate simplifying conditions are considered.

Boundary values for B(x) and A,

As noted previously, in order to render the problem
statically determinate, an assumption about the side
force can be made. Morgenstern and Price (1965)
assumed that

[27] tanB = Af(x)

where f(x) is an assumed function and A is a coefficient
to be determined.
Janbu (1973) assumed that

(28] A.=3%
where

[29] Ac=(y—y)/(y — 2)

and y, = the ordinate of the point of action of the total
normal force.

Basically, A, and Af(x) could be any function.
However, the values of A; and Af(x) at the boundary
points A and B should be fully specified if the slip
surface terminates at a surface slope that is not vertical.
This marks a distinction from the previously published
work.

Point A is a special point where the ratio of X to E is
equal to the ratio of 7,, to o,, i.e. (see Fig. 3),

X
[30] tanB, = lim = =2
x—a E o,

where B, = the inclination of the total side force G at the
boundary point A, and 7,,,0, = the shear and normal

dp

13
(sin B — cos 3 tan a) exp [J tan (¢’ — o + B) — dc] d¢

dg

stress on CB, the vertical side of the end element ACB.

If the stress tensor at point A is determined, B will be
fixed as well.

The stresses can be determined by drawing the Mohr
circle as shown in Fig. 3, in which the general case of the
end slice ABC with a sloping surface AB and a vertical
load g is considered. Point A in the Mohr circle
represents the stress state along the surface AB of the
element. Since

[31] o, = gcos®y
[32] 75 = g sin+ycosy

the angle AOC in the Mohr circle (Fig. 3b) is equal to .

It is required that the Mohr circle in Fig. 3b pass
through point A, be tangent to the Mohr—Coulomb
failure line GD, and make the angle ABD equal to o —
+v. The circle is therefore unique. The stress state on any
plane of the element is represented by a point on the
Mohr circle that is the intersection point of the Mohr
circle and a straight line passing through point B and
parallel to the plane concerned, provided the X axis of
the Mohr circle is parallel to the direction of the minor
principal stress of the element. For example, the stress
state of the failure surface AC in Fig. 3a is represented
by the point D in the Mohr circle that makes BD inclined
at an angle of a — +y to AB.

Consider point E in Fig. 35, which makes the angle
EOC equal to vy (E is on the minus side of the Mohr
circle). Point E represents the stress state of a surface in
the element on which

[33] Ty/0,= —tanvy

In Fig. 35, it can be shown that EB is inclined at an
angle of 90° — -y to AB. This indicates that the surface
represented by point E in the Mohr circle is the one in the
element that is inclined at an angle (90° — v) to the
surface AB. This plane is nothing else but the vertical
surface BC of the element. Hence the stress state on the
vertical surface should satisfy [33]. In other words, the
side force on the vertical surface BC of the end slice
should be parallel to the surface slope AB of the slice if
the width of the slice is sufficiently small.

The need for determining the boundary values for
B(x) is actually based on the requirement for satisfying
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FiG. 3. The determination of the inclination of the end slice. Diagram of: (a) the end slice; (b) the Mohr circle of the end slice.

the moment equilibrium. For the end slices at A and B,
since the values of G and y — y, are equal to zero, all
terms of first-order magnitude in (13] are zero. The
second-order small magnitudes can no longer be neglec-
ted as was done for normal slices during the derivation of
the moment equilibrium in [10]. The consideration of
second-order magnitudes in [13] will lead to the principle
of complementary shear stresses that eventually deter-
mines the boundary values of B. In other words, if the
values of B are taken arbitrarily at A and B, the solution
will correspond to one in which the principle of
complementary shear stresses does not hold. The value
of A, at points A can also be determined due to the fact
that CB (Fig. 3a), the area over which the force E is
applied, is infinitesimally small. The restrictions that fix
the boundary values of B and A. are presented here;
formal demonstrations are contained in detailed work
available from the authors.

Restriction 1

The resultant total force acting on the vertical side of
the end slice is parallel to the surface of the slope if the
width of the end slice is sufficiently small, i.e.,

[34] Ba="a

where <y, and B, are the inclination of the slope surface
and side force G, respectively, at points A.

Restriction 2

The point of action of the total normal force on the
vertical side of the end slice is located at the midpoint in
case A and the lower one-third point in case B if the
width of the slice is sufficiently small, i.e., A, = % for
case A and A, = 4 for case B, where case A and case B
are defined as the following.

Case A
At the end points A or B, the soil is cohesive or there

is some vertical surcharge on the slope surface, i.e.,
C(a) # 0or g(a) # 0.

Case B

Atthe end points A and B, (1) the soil is cohesionless,
i.e., C(a) = 0; (2) there is no surcharge on the slope
surface, i.e., g(a) = 0; and (3) the slip surface is not
tangent to the slope

y(a)—z'(a)+0
or
2w

2
dx” | x=a

*+0

where y'(a),z'(a) are the derivatives of y(x) and z(x)
with respect to x at point A.

The numerical procedure

By linearizing the value of w(x) and some other
variables for each slice, Morgenstern and Price (1967)
developed a numerical procedure based on the Newton—
Raphson method for solving differential equations. This
method has been refined in the following aspects to
satisfy the required boundary conditions and to make the
iteration more effective.

As mentioned before, the boundary values of the side
force function B(x) should be fixed. This can be done by
taking tan B as

(351 tan P =Nf(x) + folx)

where f(x) is the assumed function, which is equal to
zero at both ends, X\ is a coefficient to be determined,
and fy(x) is another function that has the required
values at both ends, i.e.,

(36] f(a)=0
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[37] f(&) =0
(38]  fo(a) = tan B,
[39] fo(b) = tan B,

Basically, f(x) and fo(x) can be arbitrary functions;
however, in some cases, an inappropriate selection of
f(x) and fo(x) will cause difficulties in the iteration
procedure, as will be discussed subsequently.

The iteration procedure starts by substituting assumed
values (A; and F) into [23] and [25]. If \; and F; make
the values of

b
[40] G.=GM\, F)= J p(x, Ny, Fi)s(x, Ny, Fr) dx

b
[41] My=MQN\, F)= J p(x, Ay, F)s(x, Ny, Fy)
X Hx, N\, Fp) dx

not close to zero within the tolerable limit, the next
iterative values A; + AN and F; + AF that are sup-
posed to make G, and M, close to zero were given by
(Morgenstern and Price 1967) as

oM, G,
~Ongr M E
4 AN =
[42] 3G, oM, _ 3G, oM,
N OF  9F O\ |new.r=r,
oM G
n axn ~Mx axn
[43] AF =

3G, M, _ 3G, oM,
ON OF  OF ON |yon.r-r,
Instead of calculating dM,/dF, G, /oF, oM, /X,

4G, /N by linearization of the function a(x), we pro-
ceed here analytically:

dF d&

d§+D]dx

13
cos &' secasecmbe’exp{J tan P’ d‘z C} a8 E,] dx

b
[44] aa =L p(x)s(x)[k(x) f sec? ' j’; %dg]
b
[45] aaF“=f p(x)s(x)[k(x)t(x) f ¢ sec? 33’ 9B dg]
oG, (* dB da
[46] Py L p(x)s(x)[ J sec? P’ a dg
oM, (® dB do
2 -J p(x)s(x)[ J rsecty 52 dE+ D,
g
where

[48] k(x)=-— [(ﬂV + q) sin ' cosPB — ry %‘;—Y secacos(f — a)sind,’ + C.'secacosd,’ cos(p — a)]

dx

X cos ¢g’ /{F [(%"'Q)Sin (b’ —a) — ru%

(49] %= (cos? B)f(x)

g
dx

5 [ ]

t
[50] D;= tan, — - -

[511 D, = —-Z [t tan ;' dﬁ]r

where D;, D,; are coefficients accounting for the possi-
ble discontinuity of ¢.’ or « at certain point i at which
the value of ¢, or a changes abruptly from [b.;'],, [o],
to {bei'l;, {0yl the superscript » and subscript |/

secasin ¢’ + C¢' sec o cos cbe’] cos (¢’ —a + B)}

represent the values at the right and left side at this point
of discontinuity.

The derivation of [44]-[47] may also be found in
detailed work available from the authors.
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Y =172 kN/m

tanB= \ f(x) + fo(x) tanf =\ £{x) + folx)
%: Mx) A(x)
fo(X)
fo(X)
X X
case 2 case |
The process of iteration
case | case 2
F A F A
2.030 0.010 2.030 0.010
2.068 -0.090 2.038 0.733
2.058 0.115 2.051 0.673
2.065 -0.036 2.051 0.669
1.947 2.481
2.051 1.358
2.049 0.46!
2,057 0.163
2.063 0.002
2.079 -0.334
2.069 -0. 165
2.064 -0.022
2.107 ~0.925
1.995 -0.617
2.059 ~0.408
2.068 -0.209
2.065 ~0.062
2.048 0. 327

2.058 0.108

FiG. 4. An example showing the selection of f(x) and fo(x).

Since the condition of fixing the boundary value by
[38] and [39] is not used in the derivation of [44]-[47],
the latter are applicable to cases where the boundary
values of B(x) are not fixed. If it is not desired to fix the
boundary value of B(x), for example, when the case of
f(x) = 1 of the Morgenstern—Price method is evaluated,
then it is simple to take f(x) = 1 and fo(x) = O.
Equations [44]—[47] still apply.

The problem of convergence is a common concern
during the iteration. The refinement for the computation
of the derivatives described previously, in combination
with the following techniques, facilitates convergence.

(1) The assumed function f(x) is selected to have the

same sign throughout the region (a, b). Figure 4 shows
an example in which two different choices of f(x) and
fo(x) consistent with the same tan f3 are used. In case 2,
the value of tan B will increase or decrease as a whole
with an increment of A, while in case 1 only part of the
value of tan will be increased and the rest will be
decreased. As aresult, G, and M, may not be monotonic
in A and some difficulties may be experienced in
iteration. The table in Fig. 4 shows that case 2
successfully converges but case 1 fails to converge.

(2) The assumed values of F'; and A, are estimated as
closely as possible to the final solution. Some of the
simplified methods such as that of Fellenius could be
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used for the estimation of the factor of safety. Chen
(1981) suggested a simplified equation that is applicable
to generalized failure surfaces and gives reasonable
estimates without the need of iteration.

For estimating the value of A, it is suggested that the
average value of (x) be taken as equal to the average
inclination of the slip surface, i.e.,

b

b
[52] J taanx=J tan o dx

a a

By substituting [35] into [52], it is easy to find the
value of \; for the first iteration.

Another way of estimating the values of F, and A, is
to estimate a number of sets of F; and \; that possibly
cover the accurate values and substitute them into [42]
and [43]. The accurate values of F and \, which make
G, and M, in [42] and [43] equal to zero, will in turn
result in zero values of AF and AX. The set of F; and \,
that gives the minimum value of A\N? + AF? is therefore
very likely close to the accurate value of F and \ and
makes the problem converge effectively.

With the refinements described in this section, the

b

[55] AG,= J

a

b

numerical procedure has converged in every case
investigated.

Upper and lower bound solutions for factor of safety

By assuming different side force functions, a number
of solutions for the factor of safety can be found.
However, the physically acceptable solutions are lim-
ited within reasonably narrow bounds. In order to find
the bound, it is advantageous to investigate how the
value of F changes with a variation of side force function
B(x) that is required to be physically reasonable.

Suppose there is a set of solutions F* and $*(x) that
satisfies the force and moment equilibrium equations
[23] and [25], i.e.,

b
[53] Gn= J p(F*, B*)s(F*, B*)dx =0

b
[54] M, = J p(F*, B¥)s(F*, B¥)u(F*, B*) dx =0

If a neighbouring solution of F* + AF, B* + AB
also satisfies [23] and [25], we have

b

D(F* + AF, B* + AB)s(F* + AF, B* + AB)dx ~ J D(F*, B3*)s(F*,B*)dx=0

a

[56] AM,= J p(F* + AF, B* + AB)s(F* + AF, B* + AR)1(F* + AF, B* + AB) dx

a

b
- J p(F™*, B*)s(F*, B*)e(F*, B*) dx =0

a

Equations [55] and [56] indicate that the variation of G, and M, due to the increment of F* and B*(x) should
be zero if F* + AF and $* + AP is another set of solutions of [23] and [25].

Let AB(x) take the form
[57] AB = em(x)

where € is a coefficient that makes Af sufficiently small in comparison to the corresponding values of B. It can

be shown that
[58] AG, = KyAF + Kg.e + o(AF, ¢)

[59] AM, = K ¢AF + K¢ + o(AF, ¢)

where

b x '
[60] Kgf‘—‘J p(x)s(x)[k(x)—~J sec? y, 3% ﬂﬁdg} dx

. dF dt

b x '
[61] Kpe= L p(x)s(x) [k(x)t(x) - L tsec® Y.’ dj); % dg} dx

b x d()L
[62] K,, = J p(x)s(x) [— J sec” Y’ d—n(é) d€ + B;

a 3

|



Can. Geotech. J. Downloaded from www.nrcresearchpress.com by Beijing University of Aviation and Aerospace.on 10/14/15
i ~ o For persona use only. i

112 CAN. GEOTECH. J. VOL. 20, 1983

b
[63] Kme = [ p(x)S(x)[— [

a a

X
+4(
a

m]&=—;nmwwmm+m%;wn

s

[65] Ba=— 2. [t tan e/ n(x)];

i=

and o(AF, €) represents a small magnitude of order
higher than AF and e. The details of the derivation of
[60]-[63] can also be obtained from the authors.

Substituting [58] and [59] into [55] and [56], and
neglecting o(AF, €), we have

(66] Kge(F*, BX)AF + Ky (F*, B* n(x))e = 0
[67] Kne(F* BHAF + K (F* B*, n(x)e =0

Equations [66] and [67] have non-zero solutions for
AF and ¢ only when
K (F*, p*) Ko o(F*, B* n(x))| _

68 =
(08] Kme(F*, B*) Kma(F*, B*, n(X))

(71] m=

) 1 sec? P’ %z" n(§) d§ + By

£ dp

cos d,' sec a sec Ys,’ exp {4( tan s, — dg] ne§) dg} dx

a dg

 Kee(F*, B*)KmalF¥, B*, ma(x)) — Kine(F*

which indicates that if F* + AF and B* + en(x) is a set
of solutions of [23] and [25], m(x) must be selected in
such a way that [68] holds. Once the value of n(x)
satisfying [68] has been found, AF can be obtained by
solving [66] or [67] with a specified value of & that
makes m(x) sufficiently small. The smaller the value of &
is, the more accurate the new solution will be. After
performing this procedure several times, it is possible to
obtain a new solution that is distinct from the original
solution and satisfies [23] and [25] with the required
accuracy.
To find m(x), let

(691 m(x) = mmi(x) + mu(x)

where m;(x) and m,(x) are arbitrary functions that are
linearly independent, namely,

[70] maAx) # Cimilx) + C;

where C; and C, are constants.
By substituting [69] into [68], we obtain

B*)Kga(F*, B*’ ”ﬂz(x))

Kot (F*, B*)Kma(F*, B, M1(x)) — Kme(F*

Substitution of [69] into [66] yields

Kgo(F*, B*, m(x))

72] AF = -
72 Koe(F*, B¥)

and
[73] AB = en(x) = e[mm(x) + M2(x)]

Basically, m;{x) and m,(x) can be arbitrary functions.
Attention should be paid to the case where B*(x) is zero
at a certain point. In that case, in order to ensure that AR
is smaller than B*(x), it is advantageous to specify that
M1(x) and m,(x) are also equal to zero at that point.

For our purpose here, two sets of 7;(x) and m5(x) may
be used.

The first set of m;(x) and m,(x) is selected as an elliptic
and a parabolic function (curves 1 and 2 in Fig. 5). The
function m(x) has positive values in the middle part of
the region (a, b) and negative values of both sides if € is
positive and m is less than 2. This results in an increase
of B(x) in the middle part and a decrease on both sides. If
e is negative, B(x) will be decreased in the middle part

B*)Kga(F*1 B*’ nl(x))

and increased on both sides. Thus, the first set of m;(x)
and mp(x) will result in an upward or downward
movement of the peak value of B(x).

The second set of m;(x) and m(x) (curves 3 and 4 in
Fig. 5) are selected as cubic polynomial functions with
the peak values on the left and right sides respectively.
The function B(x) is positive on the left side and negative
on the right side if € is positive and m is near 1. This
results in a movement of the peak values of B(x) to the
left. A negative value of £ will result in a movement of
the peak value to the right.

Because the behaviour of F,., the factor of safety
along the vertical surface of the slices, is related to B(x),
the movement of the peak value of B(x) will eventually
make F. reach the bound beyond which the value of F,
is less than unity and the requirement of physical
admissibility for F, is not satisfied. From the equation

4( G(sin 3 — cos B tan &) dx
(74] ye=y+ =

Gcos B
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7
Curve 2
o} X
a b
Curve |
7
Curve 3
o} o ) X
Curve 4
Curve | -:7,(x)=-(1—(2()(-<J)/(b~u)-l)2)0'5

Curve 2 7,({x)=-8(x-b) (x—a)/(b—u)2
2 3
Curve 3 7, (x)=675{-b)" (x-a)/(b-a)
2 3
Curve 4 7, (x)=6.75(x =b)(x=a)" /(b-a)

XY =M, (x)+ my(x)

A Bx)=e 7(x)
FiG. 5. The integration function n(x).

it can be inferred that an increase of the average value of
B(x) in the region (a,x) will result in an increase of the
value of y, at x and in turn a decrease of A.. Therefore, if
n1(x) and m,(x) are selected as curves 3 and 4, the value
of A, will probably decrease with a positive value of ¢
and increase with a negative value of €.

In the examples that follow it will be shown how the
value of A’ or F,, moves to the bound by an appropriate
selection of the set of integration curves 1};(x), 15(x) and
the value of «.

Hlustrative examples

A computer program has been coded at the University
of Alberta to undertake the calculation and a plotting
program has also been added to assist in interpreting the
computations.

Example 1

Find the factor of safety of the slope shown in Fig. 6
for the circular failure surface 1. Also find the factor of
safety for circular failure surface 2 under drained
conditions.

Failure surface 2

Foilure surface | A

Sail Unit Waight ¢’ ¢! Cu

(xN/m3 ) (xPa) {kPa)
T 2010 38 0 10.06
2 19.63 23 5.27 19.64
3 17.27 20 T.19 26.35

F1G6. 6. Example 1.
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F1G. 7. The peak value of B(x) moves upward (example 1).
Curves 1 and 2 were employed; € = 0.025..
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FiG. 8. The peak value of B(x) moves downward (example
1). Curves 1 and 2 were employed; ¢ = —0.025.

Failure surface 1

The analysis using effective strength parameters was
first performed. The failure surface terminates at the
horizontal slope at both ends. A sine function is selected
for f(x), and fo(x) is taken as zero. The values of Fand A
were found to be 1.465 and 0.360 respectively. The
curves of F,. and A.' associated with the original case in
Fig. 7 show that this is a physically reasonable solution.
However, the value of F . approaches the F,. = 1linein
the middle part of the region. If the value of B(x) is
increased in the middle part by employing curves 1 and 2

4
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I e e i
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e ol |, /]
W / /
s 3 Original F=l463
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0 I b}
100 80 60 40 20 Q
40
301 After 3 integrations
20- riginal
— /
»
=~ 10
xQ
o
_Io.
-20
100 80 60 40 20 [¢]

Horizontal Distance (m)

F1G. 9. The peak value of B(x) moves to the left (example 1).
Curves 3 and 4 were employed; € = —0.025.

with a positive ¢ value of 0.025, the value of F. will
eventually go below unity in the middle part. Figure 7
shows the progress of the integration. After 12 integra-
tions, the lowest value of F,, was less than unity; the
integration in this direction was then stopped. The
corresponding values of the factor of safety change from
1.465 to 1.471. An integration in the opposite direction
can be made by taking & as —0.05 as shown in Fig. 8.
The value of F,. increases in the middle part and
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F1G. 10. The peak value of B(x) moves to the right (example
1). Curves 3 and 4 were employed; € = 0.04.

decreases on both sides. The F,. curve eventually
touches the F,, = 1 line after 12 integrations. The factor
of safety changes from 1.465 to 1.455.

Curves 3 and 4 are used to move the peak value of
B(x) to the right and left by taking € equal to 0.04 and
—0.025 respectively (Figs. 9 and 10). The values of the
factor of safety associated with the solutions touching
the F,. = 1 line were 1.444 and 1.470 after nine and
three integrations respectively.

40

LCurve 4
Curve | Curve 3

D
>§7b

Curve 2

301

20
o ﬁ
00 8

riginal

)

0 [}

A x
o

~104

-20

| LA

I 0 80 A

Horizontal Distance (m )

Curve Integration Function Time of Integration € F

T Original 0.940
2 curve | ond 2 12 0.05 0.940
3 curve | and 2 12 -0.05 0.940
4 curve 3 and 4 12 0.05 0.940
5 curve 3 ond 4 12 -0.05 0,940

FiG. 11. Analysis by the ¢ = 0 method (example 2).

In all of the foregoing cases, the values of A.' were
reasonable.

So far, the assumed side force function B(x) covered a
large variation. Each time, it eventually reached the
bound beyond which the solution became unreasonable.
No factor of safety higher than 1.471 or lower than
1.444 was found. The bounds of the factor of safety
were therefore determined to be 1.444 and 1.471.

As a check on the program, the ¢ = 0 method using
the same unit weight and a circular failure surface was
analysed by a similar integration procedure. The value
of the factor of safety in all cases was 0.940 (Fig. 11).
This is consistent with the basic principle that, for the ¢
= 0 method with a circular slip surface, the resulting
factor of safety is independent of the assumptions made
for the interslice force.

Failure surface 2

Failure surface 2 exits at the toe of a slope. The value
of B(x) at the left end should be fixed at 31°, which is the
inclination of the slope surface at which the slip surface
exits (Fig. 6). The original solution gave a value for the
factor of safety of 1.682, but is associated with a
distribution of F., that is smaller than unity on the left
part due to the relatively high value of B(x) in that area
(Fig. 12). Curves 3 and 4 were employed to reduce the
value of B(x) on the left part with a value of e of 0.025.
After 12 integrations, the region lower than the F,, = 1
line was reduced appreciably; the factor of safety
became 1.639. Although a further effort to make that
unreasonable region even smaller is possible, the factor
of safety will likely remain around 1.639.

Example 2

Find the value of the factor of safety for the
wedge-shaped slide shown in Fig. 13.

A similar integration procedure is performed for this
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HG. 13. An example of the wedge slide.

30 2
Distance (m)

(e}

10 0

F1G. 12. The analysis for failure surface 2 (example 2). Curves 3 and 4 were employed; € = 0.025.

o‘_._‘—llo(m 0 %0 problem. Figure 14 shows the various critical F',, curves

that touch the F,. = 1 line. The factor of safety ranged
between 1.677 and 1.696. It is interesting to note that 3,
the value of B at point A at which the inclination of the
failure surface changed abruptly, ranged from 17-23°,
Near the right end, the value of A.' is not satisfactory.
As was indicated by Spencer (1973), the location of the
thrust line is always unreasonable near the crown of a
cohesive slope unless a tension crack is considered.
Spencer has suggested a method to determine the tension
crack associated with reasonable values of A’ near the
crown. A further investigation of the problem in
combination with the method developed here would be
of interest, but is set aside for further study.
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Fic. 14. The analysis for the wedge slide (example 2).
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Soit Type
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Eeq columnar jointed titl
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»| silty clayshale

E Alt. layers dark grey
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It. grey sandstone,
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c® c s
53 275 - 275 R
2 8 250 o — 50 D 9
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clay shale 21.97
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weathered
clay shale 17.55

Saturated densny
(kN/m )

18.83
19.81

21.97

18.83

Fic. 15. The Edgerton slide (example 3).

Example 3. Analysis of the Edgerton slide (Fig. 15)

The Edgerton slide was analysed by Thomson and
Tweedie (1978) and their case 2 is re-analysed here. A
factor of safety of 0.958 was found originally. It is
interesting to note that in this case the value of A’ rather
than F. is not satisfactory in the right-hand part of the
region (Fig. 16). In order to reduce this unreasonable
region, curves 3 and 4 were employed with a value of €
of 0.015. After 9—12 integrations, the values of A.' over
most of the region were reasonable. The corresponding
factor of safety is around 0.960.

Conclusions

The generalized method of slices employed in the
analysis of slope stability requires that (1) all conditions
of equilibrium be satisfied, (2) the Mohr—Coulomb
failure criterion be satisfied for a specific definition of
the factory of safety, and (3) certain conditions of
physical admissibility not be violated.

In addition, an extra assumption must be made to
render the problem statically determinate.

It has been shown formally here that the assumptlons
of the inclinations of the interslice forces or the location
of the thrust line are subject to certain restrictions at the
ends that have been ignored in previous work. Guidance
for satisfying these restrictions are given. A modified
iterative procedure has been developed that to date has
not encountered the convergence problems that occa-
sionally affect other programs in common use.

The factor of safety in any particular problem is not
unique. A procedure has been developed for exploring
formally the bounds of the factor of safety within the
limits of physical admissibility. It has been shown that,
consistent with earlier studies, the variation in the factor
of safety when subjected to conditions of physical
admissibility is small for all practical purposes. This
new analysis confirms the view that variations in the
factor of safety between several methods in common use
are of little practical significance.
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F1G. 16. Search for a reasonable solution (example 3). Curves 3 and 4 were employed; £ = 0.015.

A copy of the new computer program is available
from the authors.
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