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Extensions are suggested to the generalized method of slices that is commonly used in slope stability analysis. It is shown 
that restrictions exist on the assumptions used to make the problem statically determinate. In addition, a numerical procedure 
has been developed to find the bounds to the factor of safety, subject to additional requirements of physical admissibility. As 
a result of these developments it has been possible to produce a revised computer program that appears to overcome the problems 
of convergence experienced by other programs in current use. Results obtained with this new analysis confirm the reliability of 
several methods of analysis used in practice. 

On propose des dCveloppements A la mCthode des tranches gCnCralisCe qui est couramment utilisCe dans l'analyse de stabilitC 
de pentes. On montre qu'il existe des restrictions aux hypothkses utilisCes pour rendre le problbme statiquement dCterminC. De 
plus, une procCdure numkrique a CtC dCveloppCe pour trouver les limites du facteur de sCcuritC compte tenu d'exigences supplC- 
mentaires dladmissibilitC physique. Suite A ces dkveloppements il a CtC possible d'etablir un programme d'ordinateur qui semble 
Climiner les problbmes de convergence rencontrks dans d'autres programmes actuellement en usage. Les rksultats obtenus 
avec cette nouvelle analyse confirme la fiabilitC de plusieurs mithodes de stabilitk utilisCes en pratique. 
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Introduction 
Generalized methods of slices are commonly used to 

investigate the stability of slopes, particularly when the 
section is nonhomogeneous. However, the problem is 
statically indeterminate and assumptions are necessary 
in order to obtain numerical results. Several methods 
have been advocated. For example, Janbu (1954, 1973) 
made assumptions regarding the location of the point of 
action of the interslice force and Morgenstern and Price 
(1965) and Spencer (1967, 1973) assumed the shape of 
the distribution of the inclination of the interslice force. 
Sarma (1973) adopted the distribution of the vertical 
component of the interslice forces. 

A survey of the commonly used methods indicates the 
following. 

1. The assumptions made for the different unknown 
variables involved in the equilibrium equations do not 
result in much difference in the final factor of safety. 
This is not surprising when considering that the various 
methods are based on the same equilibrium equations 
and the unknown variables are interrelated. 

2. The assumptions regarding any unknown variable 
are not unique. A number of functions which lead to a 
group of solutions satisfying the equilibrium equations 
may be assumed. Some of the solutions should be 
rejected due to the requirement for physical admissibil- 
ity (Morgenstern and Price 1965; Whitman and Bailey 

- - 
[Traduit par la revue] 

1967; Janbu 1973). Since only the shape of the distribu- 
tion of one of the unknown functions is assumed, the 
physical reasonableness cannot be checked until the 
final solution has been found. The selection of the 
assumed function depends to a large extent on intuition 
and experience but may be guided by stress analysis. 
Since we are basically confronted with an infinite 
number of possible choices for the assumed function, 
after performing several calculations we are still uncer- 
tain if some relevant solutions are missing or not. 

The purpose of this paper is to overcome the disad- 
vantages involved in the currently used methods by the 
following. 

1. It will be shown that restrictions that have Geen 
ignored so far exist on the boundary values of the 
distributive assumption. The search for the solution to 
the equilibrium equations is then undertaken with a 
group of assumed functions that are fixed at both ends. 

2. A method of sensitivity analysis to explore the 
influence of the assumed functions associated with 
physically reasonable solutions to the equilibrium equa- 
tions will be developed. An efficient computer program 
for this method has been coded. 

With the help of these two extensions, the bounds on 
the factor of safety caused by conditions of physical 
admissibility can be found. The effort required of the 
user is reduced considerably. 

0008-3674183 /OlOlO4- l6$Ol .OO/O 
01983 National Research Council of CanadaIConseil national de recherches du Canada 

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
B

ei
jin

g 
U

ni
ve

rs
ity

 o
f 

A
vi

at
io

n 
an

d 
A

er
os

pa
ce

 o
n 

10
/1

4/
15

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



CHEN AND MORGENSTERN 

The general equilibrium equations 
Limit equilibrium considerations in slope stability 

analysis are based on the following. 
1. Principle of equilibrium 
The sliding mass is divided into a number of slices. 

The requirements for force and moment equilibrium 
should be fully satisfied for every individual slice. 

2 .  Mohr-Columb failure criterion 
The Mohr-Columb failure criterion holds along the 

failure surface, 

[ I ]  T = C' + unr tan 4 '  

where unl = normal effective stress on the failure plane, 
T = shear stress on the failure plane, C' = effective 
cohesion, and 4 '  = effective friction angle. 

3. The factor of safety F 
This is defined as that value by which the available 

shear strength parameters must be reduced in order to 
bring the soil mass into a state of limiting equilibrium 
along a given slip surface. Hence, 

[2] T = Cel + (tan +,')unf 

where 

[3] C,' = C 1 / F  

[4] tan 4,' = (tan +')IF 

and F = the factor of safety. 
In addition to these considerations, there are condi- 

tions of physical admissibility (Morgenstern and Price 
1965) as follows. 

1 .  The shear force on the vertical surface of any slice 
should not exceed the shear strength that can be 
mobilized along the surface (Fig. I ) ,  

[5] Fv = [Er  tan +,,' + CaV1(y - z ) ] /X  > F 

[61 Fve = Fv/F 
= [E' tan + CaVer(y - z)l/X > 1 

where Fv = factor of safety along the vertical surface of 
the slice, Fve = relative factor of safety along the 
vertical surface of the slice, E' = effective normal force 
on the vertical surface, X = shear force on the vertical 
surface, tan +,,I, CaV1 = the average effective strength 
parameter on the vertical surface, tan Cave1 = tan 
+,,I, Cay' divided by the factor of safety, y = the 
ordinate of the slip surface, and z = the ordinate of the 
slope surface. 

2. To avoid tensile stresses the line of action of the 
resultant effective normal force should not lie outside 
the vertical surface of the slice, i.e. (Fig. 2a),  
[7] 0 <Ac'  < 1 

FIG. 1. The generalized failure surface. 

where 

[81 Ac' = ( Y  - Y ~ ' ) / ( Y  - z) 

and y,' = the ordinate of the point of action of the 
effective normal force. 

The general equilibrium equations for a slice can be 
expressed as 

dG 4 
cos (4,' - a + p )  - - sin (4,' - a + p )  - G 

dx dx 

- -sin (4,' - a )  + q sin (4,' - a )  
= 1:: 

dW 
- ru - sec a sin 4,' + C,' sec a cos 4,' 

dx 1 
d d 

[ l o ]  G sin p = - y -(G cos p )  + - (y,G cos p )  dx dx 

where G = the resultant total force on the vertical side of 
the slice, p = the inclination of G to the horizontal, 
dW/dx = the weight of the slice per unit width, r, = 
pore pressure ratio (Bishop and Morgenstern 1960), 
and q = vertical surface load. 

Equation [9] can be obtained by substituting 

[ I I . ]  E = Gcos p 

[12] X = G sin P 
into the equation of force equilibrium (eq. [ l o ] )  of 
Morgenstern and Price's paper (1965). However, the 
signs of the various terms of the two equations are not 
identical due to the different positive direction of the 
coordinate systems that have been used. Equation [9] 
can also be established by projecting all the forces acting 
on the slice to the axis A-A which is inclined at an angle 
of (4 '  - a )  to the horizontal (Fig. 2b). In this case the 
resultant of N and S, the force P ,  which is inclined at an 
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angle of 0,' to the normal, contributes nothing to the 
force equilibrium equation. 

Equation [lo] is obtained by considering the moment 
equilibrium about the midpoint of the base of the slice. 

[I31 (G + AG) cos (P + APMy + Ay) 

- ( ~ r  + AYJ - UYI 
- G cos P(y - y, + 4Ay) + G (sin @)Ax = 0 

Neglecting the small magnitudes of order higher than 
AG and Ap, [13] reduces to [lo]. 

The corresponding boundary conditions are: 

where a, b are abscissa values of the ends of the sliding 
mass. 

If the slip surface terminates at a slope surface that is 
not vertical, the slices at both ends are triangles rather 
than rectangles. It is then required that the value of p and 
A, be fixed at points A and B. A detailed discussion will 
be given in a subsequent section. 

By virtue of [14]-[17], [lo] can be integrated: 

[18] l b  G(sin p - tan a cos p) dx = 0 
a 

For brevity, [9] is rewritten as 

dG dP 
[I91 - - tan $,' - G = -p(x) sec +,' dx dx 

where 

( b )  

FIG. 2. The force equilibrium of a slice. 

dW dW 
[20] p(x) = -- sin (6,' - a )  + q sin (0,' - a )  - r, - sec a sin 4,' + C,' sec a cos +,' 

dx dx 

By substituting the boundary condition of [14], the solution to [19] is 

5 dP 
[221 G(x) = - exP [ I x  fan (0.' - a + p) - di]  I X  p(6) sec I): exp [- 1 tan (0: - a + p) - di]  d6 

d i  a a d i  

where 6 and 6 are dummy variables substituting for x. 
Substitution of [I51 into [22] yields 

[23] 1 p(x)s(x) dx = 0 
a 

where 

[24] s(x) = sec 4,' exp I 
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CHEN AND MORGENSTERN 

Substituting [22] into [18] and integrating by parts, we obtain 

[25] 1 P(X)S(X) t(X) dx = 0 
a 

where 
5 dP [26] t(x) = 1' (sin P - cos P tan a )  exp [I tan (4.' - a + P) - di] d t  

a a d5 

Equations [23] and [25] are governing equations for 
the calculation of the factor of safety. 

The function p(x), which does not contain P(x), 
accounts for the geometrical and physical properties of 
the slope. The function s(x) takes into account the 
assumption that will be made for P(x) For an assumed 
function P(x), the value of F that satisfies [23] and [25] 
may be found. It has been shown (Chen 1981) that [23] 
and [25] are reducible to special cases, such as the 
wedge slide analysis, Bishop's simplified method 
(Bishop 1955), the logarithmic spiral method (Taylor 
1948), and Spencer's method (Spencer 1967) if the 
appropriate simplifying conditions are considered. 

Boundary values for P(x) and A, 
As noted previously, in order to render the problem 

statically determinate, an assumption about the side 
force can be made. Morgenstern and Price (1965) 
assumed that 

[27] tan P = h f (x) 

where f (x) is an assumed function and h is a coefficient 
to be determined. 

Janbu (1973) assumed that 

[28] A, = 3 
where 

[291 A, = (Y - Y,)/(Y - z )  

and y, = the ordinate of the point of action of the total 
normal force. 

Basically, A, and hf(x) could be any function. 
However, the values of A, and hf (x) at the boundary 
points A and B should be fully specified if the slip 
surface terminates at a surface slope that is not vertical. 
This marks a distinction from the previously published 
work. 

Point A is a special point where the ratio of X to E is 
equal to the ratio of T, to ox, i.e. (see Fig. 3), 

T, [30] tan pa = lim - = - 
x+a E ax 

where pa = the inclination of the total side force G at the 
boundary point A, and T,,u, = the shear and normal 

stress on CB , the vertical side of the end element ACB. 
If the stress tensor at point A is determined, P will be 

fixed as well. 
The stresses can be determined by drawing the Mohr 

circle as shown in Fig. 3, in which the general case of the 
end slice ABC with a sloping surface AB and a vertical 
load q is considered. Point A in the Mohr circle 
represents the stress state along the surface AB of the 
element. Since 

[32] 7, = q sin y cos y 

the angle AOC in the Mohr circle (Fig. 3 b) is equal to y. 
It is required that the Mohr circle in Fig. 3b pass 

through point A, be tangent to the Mohr-Coulomb 
failure line GD, and make the angle ABD equal to a - 
y. The circle is therefore unique. The stress state on any 
plane of the element is represented by a point on the 
Mohr circle that is the intersection point of the Mohr 
circle and a straight line passing through point B and 
parallel to the plane concerned, provided the X axis of 
the Mohr circle is parallel to the direction of the minor 
principal stress of the element. For example, the stress 
state of the failure surface AC in Fig. 3a is represented 
by the point D in the Mohr circle that makes BD inclined 
at an angle of a - y to AB. 

Consider point E in Fig. 3b, which makes the angle 
EOC equal to y (E is on the minus side of the Mohr 
circle). Point E represents the stress state of a surface in 
the element on which 

In Fig. 3b, it can be shown that EB is inclined at an 
angle of 90" - y to AB. This indicates that the surface 
represented by point E in the Mohr circle is the one in the 
element that is inclined at an angle (90" - y) to the 
surface AB. This plane is nothing else but the vertical 
surface BC of the element. Hence the stress state on the 
vertical surface should satisfy [33]. In other words, the 
side force on the vertical surface BC of the end slice 
should be parallel to the surface slope AB of the slice if 
the width of the slice is sufficiently small. 

The need for determining the boundary values for 
P(x) is actually based on the requirement for satisfying 
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( 0 )  

FIG. 3. The determination of the inclination of the end slice. D 

the moment equilibrium. For the end slices at A and B, 
since the values of G and y  - y, are equal to zero, all 
terms of first-order magnitude in [13] are zero. The 
second-order small magnitudes can no longer be neglec- 
ted as was done for normal slices during the derivation of 
the moment equilibrium in [ lo ] .  The consideration of 
second-order magnitudes in [13] will lead to the principle 
of complementary shear stresses that eventually deter- 
mines the boundary values of P. In other words, if the 
values of p are taken arbitrarily at A and B, the solution 
will correspond to one in which the principle of 
complementary shear stresses does not hold. The value 
of A, at points A can also be determined due to the fact 
that CB (Fig. 3a), the area over which the force E is 
applied, is infinitesimally small. The restrictions that fix 
the boundary values of P and A, are presented here; 
formal demonstrations are contained in detailed work 
available from the authors. 

Restriction 1 
The resultant total force acting on the vertical side of 

the end slice is parallel to the surface of the slope if the 
width of the end slice is sufficiently small, i.e., 

[341 Pa = ya 

where y, and Pa are the inclination of the slope surface 
and side force G, respectively, at points A. 

Restriction 2 
The point of action of the total normal force on the 

vertical side of the end slice is located at the midpoint in 
case A and the lower one-third point in case B if the 
width of the slice is sufficiently small, i.e., A, = 6 for 
case A and A, = $ for case B, where case A and case B 
are defined as the following. 

Case A 
At the end points A or B, the soil is cohesive or there 

liagram of: (a) the end slice; ( b )  the Mohr circle of the end slice. 

is some vertical surcharge on the slope surface, i.e., 
C(a) f 0 or q(a) # 0.  

Case B 
At the end points A and B, ( 1 )  the soil is cohesionless, 

i.e., C(a) = 0;  (2)  there is no surcharge on the slope 
surface, i.e., q(a) = 0;  and (3)  the slip surface is not 
tangent to the slope 

yl(a)  - zl(a)  + 0 

where y1(a),z '(a) are the derivatives of y(x) and z(x) 
with respect to x at point A. 

The numerical procedure 
By linearizing the value of a(x )  and some other 

variables for each slice, Morgenstern and Price (1967) 
developed a numerical procedure based on the Newton- 
Raphson method for solving differential equations. This 
method has been refined in the following aspects to 
satisfy the required boundary conditions and to make the 
iteration more effective. 

As mentioned before, the boundary values of the side 
force function P(x) should be fixed. This can be done by 
taking tan P as 

where f  ( x )  is the assumed function, which is equal to 
zero at both ends, h is a coefficient to be determined, 
and fo(x) is another function that has the required 
values at both ends, i.e., 
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CHEN AND MORGENSTERN 109 

Basically, f (x) and fo(x) can be arbitrary functions; 
however, in some cases, an inappropriate selection of 
f(x) and fo(x) will cause difficulties in the iteration 
procedure, as will be discussed subsequently. 

The iteration procedure starts by substituting assumed 
values (Al and F1) into [23] and [25].  If hl  and F1 make 
the values of 

[do1 Gn = G@i, FI )  = p(x, XI, F I ) ~ ( x ,  hi,  Fi) dx 

not close to zero within the tolerable limit, the next 
iterative values h l  + Ah and F1 + AF that are sup- 
posed to make Gn and M, close to zero were given by 
(Morgenstern and Price 1967) as 

Instead of calculating aM,/dF, dGn/dF, aMn/ah, 
dG,/ah by linearization of the function a(x), we pro- 
ceed here analytically: 

where 

dW 
1481 k(x) = - [(g + q) sin cos P - ru - sec a cos (P - a )  sin +.' + Cel sec a cos +,' cos (p - a )  

dx 1 
dW 

X cos / IF [(g + q) sin (0.' - a )  - ru - dx sec a sin A' + C,' sec a cos +,'I cos (9,' - a + p)} 

dP 
1491 - = (cos2 P) f (x) dh 

[ ~ O I  D~ = tan +, - ::Ix=,- [tan+eil- '3 

where Di, Dti are coefficients accounting for the possi- represent the values at the right and left side at this point 
ble discontinuity of 4,' or a at certain point i at which of discontinuity. 
the value of +,I or a changes abruptly from [ai],. The derivation of [44]-[47] may also be found in 
to [4ei']r, [ailL; the superscript r and subscript I detailed work available from the authors. 
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/ I 

, . 
case 2 

The orocess o f  i terat ion 

case l 

case I case 2 

F A F A 
2.030 0.010 2.030 0.010 
2.068 -0.090 2.038 0.733 
2.058 0.115 2.051 0.673 
2.065 -0.036 2.051 0.669 
1.947 2.481 
2 ,051 1.358 
2.049 0.4 6 1 
2,057 0.163 
2.063 0.002 
2.079 -0.334 
2.069 -0. 165 
2.064 - 0.022 
2.107 -0.925 
1.995 -0.617 
2.059 -0.408 
2.068 -0.209 
2.065 -0.062 
2.048 0. 327 
2.058 0.108 

.. . . . ,  

FIG. 4. An example showing the selection off  (x) and fo(x) .  

Since the condition of fixing the boundary value by same sign throughout the region (a, b). Figure 4 shows 
[38] and [39] is not used in the derivation of [MI-[47], an example in which two different choices off  (x) and 
the latter are applicable to cases where the boundary fo(x) consistent with the same tan p are used. In case 2, 
values of P(x) are not fixed. If it is not desired to fix the the value of tan P will increase or decrease as a whole 
boundary value of P(x), for example, when the case of with an increment of X, while in case 1 only part of the 
f (x) = 1 of the Morgenstern-Price method is evaluated, value of tan P will be increased and the rest will be 
then it is simple to take f (x) = 1 and fo(x) = 0. decrcased. As a result, G, and M ,  may not be monotonic 
Equations [MI-[47] still apply. in A and some difficulties may be experienced in 

The problem of convergence is a common concern iteration. The table in Fig. 4 shows that case 2 
during the iteration. The refinement for the computation successfully converges but case 1 fails to converge. 
of the derivatives described previously, in combination (2) The assumed values of F1 and hl are estimated as 
with the following techniques, facilitates convergence. closely as possible to the final solution. Some of the 

(1) The assumed function f (x) is selected to have the simplified methods such as that of Fellenius could be 

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
B

ei
jin

g 
U

ni
ve

rs
ity

 o
f 

A
vi

at
io

n 
an

d 
A

er
os

pa
ce

 o
n 

10
/1

4/
15

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



CHEN AND MORGENSTERN 111 

used for the estimation of the factor of safety. Chen 
(1981) suggested a simplified equation that is applicable 
to generalized failure surfaces and gives reasonable 
estimates without the need of iteration. 

For estimating the value of XI, it is suggested that the 
average value of P(x) be taken as equal to the average 
inclination of the slip surface, i.e., 

By substituting [35] into [52], it is easy to find the 
value of X1 for the first iteration. 

Another way of estimating the values of F1 and X1 is 
to estimate a number of sets of F1 and h l  that possibly 
cover the accurate values and substitute them into [42] 
and [43]. The accurate values of F and X, which make 
G, and M, in [42] and [43] equal to zero, will in turn 
result in zero values of A F  and Ah. The set of F1 and X1 
that gives the minimum value of AX2 + A F ~  is therefore 
very likely close to the accurate value of F and A and 
makes the problem converge effectively. 

With the refinements described in this section, the 

numerical procedure has converged in every case 
investigated. 

Upper and lower bound solutions for factor of safety 
By assuming different side force functions, a number 

of solutions for the factor of safety can be found. 
However, the physically acceptable solutions are lim- 
ited within reasonably narrow bounds. In order to find 
the bound, it is advantageous to investigate how the 
value of F changes with a variation of side force function 
P(x) that is required to be physically reasonable. 

Suppose there is a set of solutions F* and P*(x) that 
satisfies the force and moment equilibrium equations 
[23] and [25], i.e., 

If a neighbouring solution of F* + AF, P* + Ap 
also satisfies [23] and [25], we have 

p(F* + AF, P* + AP)s(F* + AF, P* + AP) dx - p(F*, P*)s(F*, P*) dx = 0 

p(F* + AF, P* + AP)s(F* + AF, P* + AP)t(F* + AF, P* + AP) dx 

- I: p(F*, P*)s(F*, P*)t(F*, P*) dx = 0 

Equations [55] and [56] indicate that the variation of G, and M, due to the increment of F *  and P*(x) should 
be zero if F *  + A F  and P* + AP is another set of solutions of [23] and [25]. 

Let AP(x) take the form 

where E is a coefficient that makes Ap sufficiently small in comparison to the corresponding values of P. It can 
be shown that 

[59] AM, = KmfAF + K,,E + o(AF, E) 

where 

t sec2 JI,' - d'e' - dp df] dx 
d F  df 
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5 
+ I x  cos 4.' sec a sec J I e t  exp [I tan +e di d( q(<) d t  dx 

a a I 
S 

[641 Bi = - C [tan +ei' q(xi) l ;  + tan +,,' -da) which indicates that if F* + AF and P* + s q ( x )  is a set 
i = l  of solutions of 1231 and 1251, q ( x )  must be selected in - - . .  . 

s such a way that [ti81 holds. Once the value of q ( x )  
[651 Bti = - 1 [ti tan $,it q(xi)Ii satisfying [68]  has been found, AF can be obtained by 

i= 1 solving [66]  or [67]  with a specified value of E that 

and o(AF,  E )  represents a small magnitude of order makes q ( x )  sufficiently small. The smaller the value of E 

higher than and E .  The details of the derivation of is, the more accurate the new solution will be. After 

[60]-[63]  can also be obtained from the authors. performing this procedure several times, it is possible to 

substituting [581 and [591 into [551 and [ 5 6 ] ,  and obtain a new solution that is distinct from the original 

neglecting o(AF,  E ) ,  we have solution and satisfies [23]  and [25]  with the required 
accuracy. 

Substitution of [69]  into [66]  yields 

Basically, q l ( x )  and q2 (x )  can be arbitrary functions. 
Attention should be paid to the case where P*(x) is zero 
at a certain point. In that case, in order to ensure that A p  
is smaller than P*(x), it is advantageous to specify that 
q l ( x )  and q2 (x )  are also equal to zero at that point. 

For our purpose here, two sets of q , (x)  and q2 (x )  may 
be used. 

The first set of q l ( x )  and q2 (x )  is selected as an elliptic 
and a parabolic function (curves 1 and 2 in Fig. 5 ) .  The 
function q ( x )  has positive values in the middle part of 
the region ( a ,  b) and negative values of both sides if E is 
positive and m is less than 2 .  This results in an increase 
of P(x) in the middle part and a decrease on both sides. If 
E is negative, P(x) will be decreased in the middle part 

and increased on both sides. Thus, the first set of q l ( x )  
and q2 (x )  will result in an upward or downward 
movement of the peak value of P(x). 

The second set of q l ( x )  and q2 (x )  (curves 3 and 4 in 
Fig. 5 )  are selected as cubic polynomial functions with 
the peak values on the left and right sides respectively. 
The function P(x) is positive on the left side and negative 
on the right side if E is positive and m is near 1. This 
results in a movement of the peak values of P(x) to the 
left. A negative value of E will result in a movement of 
the peak value to the right. 

Because the behaviour of F,,, the factor of safety 
along the vertical surface of the slices, is related to P(x),  
the movement of the peak value of P(x) will eventually 
make F,, reach the bound beyond which the value of F,, 
is less than unity and the requirement of physical 
admissibility for Fve is not satisfied. From the equation 

/^  G(sin p - cos P tan a) dx 

[74] y, = y + ' a G cos p 
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2 0.5 
Curve I  q , ( x ) - - (  I - ( 2 ( x - o ) / ( b - 0 1 - 1 )  1  

5911 Unll Wobphl c ' 
@' ( k P 0 )  

cu 
Iktr/m3 I ( k P d  

I 2 3;: 23 5 27 10 06 

3 17.27 20 7 19 26.35 
19.64 

FIG. 6. Example 1. 

Curve 2 q 2 ( x l = - 8 ( x - b )  ( x - a ) / ( b - o f  

Curve 3 q ,  ( X I =  6 . 7 5  (x -b12  ( x - a ~ / ( b - a ) ~  

Curve 4 g2 ( X I '  6 . 7 5 ( x  - b l ( x - a 1 2  / (b -a?  

A f i ( x I = f  V ( x 1  

FIG. 5. The integration function ~ ( x ) .  

it can be inferred that an increase of the average value of 
P(x) in the region ( a , x )  will result in an increase of the 
value of y, at x  and in turn a decrease of A,. Therefore, if 
q l ( x )  and q 2 ( x )  are selected as curves 3 and 4, the value 
of A,' will probably decrease with a positive value of E 

and increase with a negative value of E. 

In the examples that follow it will be shown how the 
value of A,' or F,, moves to the bound by an appropriate 
selection of the set of integration curves q l ( x ) ,  q2 (x )  and 
the value of E. 

Illustrative examples 
A computer program has been coded at the University 

of Alberta to undertake the calculation and a plotting 
program has also been added to assist in interpreting the 
computations. 

Example I 
Find the factor of safety of the slope shown in Fig. 6 

for the circular failure surface 1. Also find the factor of 
safety for circular failure surface 2 under drained 
conditions. 

-20 1 I I I I I 
DO 80 60  40 20 0 

Horizontal Distance (m ) 

FIG. 7. The peak value of P(x) moves upward (example 1). 
Curves 1 and 2 were employed; E = 0.025.: 
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H o r ~ z o n t a l  Distance (m 1 

FIG. 8. The peak value of P(x) moves downward (example 
1). Curves 1 and 2 were employed; E = -0.025. 

Failure su face  I 
The analysis using effective strength parameters was 

first performed. The failure surface terminates at the 
horizontal slope at both ends. A sine function is selected 
for f (x), and fo(x) is taken as zero. The values of F and h 
were found to be 1.465 and 0.360 respectively. The 
curves of F,, and A,' associated with the original case in 
Fig. 7 show that this is a physically reasonable solution. 
However, the value of F,, approaches the F,, = 1 line in 
the middle part of the region. If the value of P(x) is 

After  3 ~ntegrot ions 

- 
X - 

%. 

Horizontal Distance (m 1 

FIG. 9. The peak value of P(x) moves to the left (example 1). 
Curves 3 and 4 were employed; E = -0.025. 

with a positive E value of 0.025, the value of F.,, will 
eventually go below unity in the middle part. Figure 7 
shows the progress of the integration. After 12 integra- 
tions, the lowest value of F,, was less than unity; the 
integration in this direction was then stopped. The 
corresponding values of the factor of safety change from 
1.465 to 1.471. An integration in the opposite direction 
can be made by taking E as -0.05 as shown in Fig. 8. 
The valne of F,, increases in the middle part and increased inthe middle pa* by employing curves 1 and 2 . -..- . . - 
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-20 1 I I I I I 
100 80 60 40 20 0 

Horizontal Distance (m ) 

FIG. 10. The peak value of P(x) moves to the right (example 
1). Curves 3 and 4 were employed; E = 0.04. 

decreases on both sides. The F,, curve eventually 
touches the F,, = 1 line after 12 integrations. The factor 
of safety changes from 1.465 to 1.455. 

Curves 3 and 4 are used to move the peak value of 
P(x) to the right and left by taking E equal to 0.04 and 
-0.025 respectively (Figs. 9 and 10). The values of the 
factor of safety associated with the solutions touching 
the F,, = 1 line were 1.444 and 1.470 after nine and 
three integrations respectively. 

. -  
2 curve I and 2 12 0 05 0.940 
3 curve I and 2 12 -0.05 0.940 
4 curve  3 and 4 I2 005  0 940 

curve 3 and 4 12 -0.05 0.940 

FIG. 11. Analysis by the 4 = 0 method (example 2). 

In all of the foregoing cases, the values of A,' were 
reasonable. 

So far, the assumed side force function P(x) covered a 
large variation. Each time, it eventually reached the 
bound beyond which the solution became unreasonable. 
No factor of safety higher than 1.471 or lower than 
1.444 was found. The bounds of the factor of safety 
were therefore determined to be 1.444 and 1.47 1 . 

As a check on the program, the r$ = 0 method using 
the same unit weight and a circular failure surface was 
analysed by a similar integration procedure. The value 
of the factor of safety in all cases was 0.940 (Fig. 11). 
This is consistent with the basic principle that, for the + 
= 0 method with a circular slip surface, the resulting 
factor of safety is independent of the assumptions made 
for the interslice force. 

Failure sullface 2 
Failure surface 2 exits at the toe of a slope. The value 

of P(x) at the left end should be fixed at 3 lo, which is the 
inclination of the slope surface at which the slip surface 
exits (Fig. 6). The original solution gave a value for the 
factor of safety of 1.682, but is associated with a 
distribution of F,, that is smaller than unity on the left 
part due to the relatively high value of P(x) in that area 
(Fig. 12). Curves 3 and 4 were employed to reduce the 
value of P(x) on the left part with a value of E of 0.025. 
After 12 integrations, the region lower than the F,, = 1 
line was reduced appreciably; the factor of safety 
became 1.639. Although a further effort to make that 
unreasonable region even smaller is possible, the factor 
of safety will likely remain around 1.639. 

Example 2 
Find the value of the factor of safety for the 

wedge-shaped slide shown in Fig. 13. 
A similar integration procedure is performed for this 
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5 -  
Original  Fz1.682 

/ //- 
4 - / 

Y / //' 
,I A f t e r  12 integrat ions F = 1 . 6 3 9  I / I / / /  

X - 
Q& 

- '00 2 0  70 6 0  5 0  4 0 3 0  2 0 D 0 

Horizontal Distance (m ) 

FIG. 12. The analysis for failure surface 2 (example 2). Curves 3 and 4 were employed; E = 0.025. 

FIG. 13. An example of the wedge slide. 

problem. Figure 14 shows the various critical F,, curves 
that touch the F,, = 1 line. The factor of safety ranged 
between 1.677 and 1.696. It is interesting to note that 6 ,  
the value of p at point A at which the inclination of the 
failure surface changed abruptly, ranged from 17-23". 
Near the right end, the value of A,' is not satisfactory. 
As was indicated by Spencer (1973), the location of the 
thrust line is always unreasonable near the crown of a 
cohesive slope unless a tension crack is considered. 
Spencer has suggested a method to determine the tension 
crack associated with reasonable values of A,' near the 
crown. A further investigation of the problem in 
combination with the method developed here would be 
of interest, but is set aside for further study. 
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"r curve I 5 cum 

- 2 0  1 I I I I I I I 
125 100 75 5 0 2 5  0 - 2 5  

Horizontal Distance ( r n  ) 

Curve Integration function Time of integration E F 
I original 1.684 
2 I ond 2 
3 I and 2 

4 3 and 4 
5 3 and 4 

FIG. 14. The analysis for the wedge slide (example 2). 
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Soil Type 

Brown highly weathered 
columnar jointed till 

w Brown highly weathered 
silty clayshale 

Stiff grey fissured 
sdty clayshale A Piezometric Surface 

Alt. layers dark qrev Failure Surface 
U Bentonitic c~ayshaie, 

It. grey sandstone, & Slope Indicator Cut.off 
carb. clayshale and 300 - - 

.E 5 
275 8 .- 

5 ;  
250 2 n 

LU m 
0 5 0 190 150 200 250 300 350 400 

Horizontal Distance (rn) 

Failure surface 1 2 3 4 5 6 7 8  
6' 23 '  41' 8 O  8 O  8 O  8 O  8 O  8 O  
C 0 0 0 0 0 0 0 0  

Moteria l Wet d e n s i t y  Satura ted  dens i ty  
( k N  r n 3 )  

T i l  I I 843 
Brown 

weathered 
s i l ty  
clay shale 1 7 . 5 5  

Grey s i l ty  
clay shale 19.8 1 

Grey 
benton i t ic  
clay sha le  2 1 . 9 7  

Brown 
weathered  
c l a y  sha le  1 7 . 5 5  

FIG. 15. The Edgerton slide (example 3). 

Example 3 .  Analysis of the Edgerton slide (Fig. 15) 
The Edgerton slide was analysed by Thomson and 

Tweedie (1978) and their case 2 is re-analysed here. A 
factor of safety of 0.958 was found originally. It is 
interesting to note that in this case the value of A,' rather 
than F,, is not satisfactory in the right-hand part of the 
region (Fig. 16). In order to reduce this unreasonable 
region, curves 3 and 4 were employed with a value of E 

of 0.015. After 9-12 integrations, the values of A,' over 
most of the region were reasonable. The corresponding 
factor of safety is around 0.960. 

Conclusions 
The generalized method of slices employed in the 

analysis of slope stability requires that (1) all conditions 
of equilibrium be satisfied, (2) the Mohr-Coulomb 
failure criterion be satisfied for a specific definition of 
the factory of safety, and (3) certain conditions of 
physical admissibility not be violated. 

In addition, an extra assumption must be made to 
render the problem statically determinate. 

It has been shown formally here that the assumptions 
of the inclinations of the interslice forces or the location 
of the thrust line are subject to certain restrictions at the 
ends that have been ignored in previous work. Guidance 
for satisfying these restrictions are given. A modified 
iterative procedure has been developed that to date has 
not encountered the convergence problems that occa- 
sionally affect other programs in common use. 

The factor of safety in any particular problem is not 
unique. A procedure has been developed for exploring 
formally the bounds of the factor of safety within the 
limits of physical admissibility. It has been shown that, 
consistent with earlier studies, the variation in the factor 
of safety when subjected to conditions of physical 
admissibility is small for all practical purposes. This 
new analysis confirms the view that variations in the 
factor of safety between several methods in common use 
are of little practical significance. 
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FIG. 16. Search for a reasonable solution (example 3). Curves 3 and 4 were employed; E = 0.015. 

After 9 integrations 

z 3- 

- F,, 9 1 --- ------ &-- 

07 

A copy of the new computer program is available 
from the authors. 
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